523 research outputs found

    Modelling the acquisition of syntactic categories

    Get PDF
    This research represents an attempt to model the child’s acquisition of syntactic categories. A computational model, based on the EPAM theory of perception and learning, is developed. The basic assumptions are that (1) syntactic categories are actively constructed by the child using distributional learning abilities; and (2) cognitive constraints in learning rate and memory capacity limit these learning abilities. We present simulations of the syntax acquisition of a single subject, where the model learns to build up multi-word utterances by scanning a sample of the speech addressed to the subject by his mother

    Stochastic methods for solving high-dimensional partial differential equations

    Full text link
    We propose algorithms for solving high-dimensional Partial Differential Equations (PDEs) that combine a probabilistic interpretation of PDEs, through Feynman-Kac representation, with sparse interpolation. Monte-Carlo methods and time-integration schemes are used to estimate pointwise evaluations of the solution of a PDE. We use a sequential control variates algorithm, where control variates are constructed based on successive approximations of the solution of the PDE. Two different algorithms are proposed, combining in different ways the sequential control variates algorithm and adaptive sparse interpolation. Numerical examples will illustrate the behavior of these algorithms

    Modelling children's negation errors using probabilistic learning in MOSAIC.

    Get PDF
    Cognitive models of language development have often been used to simulate the pattern of errors in children’s speech. One relatively infrequent error in English involves placing inflection to the right of a negative, rather than to the left. The pattern of negation errors in English is explained by Harris & Wexler (1996) in terms of very early knowledge of inflection on the part of the child. We present data from three children which demonstrates that although negation errors are rare, error types predicted not to occur by Harris & Wexler do occur, as well as error types that are predicted to occur. Data from MOSAIC, a model of language acquisition, is also presented. MOSAIC is able to simulate the pattern of negation errors in children’s speech. The phenomenon is modelled more accurately when a probabilistic learning algorithm is used

    Simulating the temporal reference of Dutch and English Root Infinitives.

    Get PDF
    Hoekstra & Hyams (1998) claim that the overwhelming majority of Dutch children’s Root Infinitives (RIs) are used to refer to modal (not realised) events, whereas in English speaking children, the temporal reference of RIs is free. Hoekstra & Hyams attribute this difference to qualitative differences in how temporal reference is carried by the Dutch infinitive and the English bare form. Ingram & Thompson (1996) advocate an input-driven account of this difference and suggest that the modal reading of German (and Dutch) RIs is caused by the fact that infinitive forms are predominantly used in modal contexts. This paper investigates whether an input-driven account can explain the differential reading of RIs in Dutch and English. To this end, corpora of English and Dutch Child Directed Speech were fed through MOSAIC, a computational model that has already been used to simulate the basic Optional Infinitive phenomenon. Infinitive forms in the input were tagged for modal or non-modal reference based on the sentential context in which they appeared. The output of the model was compared to the results of corpus studies and recent experimental data which call into question the strict distinction between Dutch and English advocated by Hoekstra & Hyams
    • …
    corecore