1,660 research outputs found
The first principles calculation of transport coefficients
We demonstrate the practical feasibility of calculating transport
coefficients such as the viscosity of liquids completely from first principles
using the Green-Kubo relations. Results presented for liquid aluminum are shown
to have a statistical error of only ca. 5%. The importance of such calculations
is illustrated by results for a liquid iron-sulfur alloy under Earth's core
conditions, which indicate that the viscosity of the liquid outer core is not
substantially higher than that of typical liquid metals under ambient
conditions.Comment: four pages, including four figure
Ab initio statistical mechanics of surface adsorption and desorption: II. Nuclear quantum effects
We show how the path-integral formulation of quantum statistical mechanics
can be used to construct practical {\em ab initio} techniques for computing the
chemical potential of molecules adsorbed on surfaces, with full inclusion of
quantum nuclear effects. The techniques we describe are based on the
computation of the potential of mean force on a chosen molecule, and generalise
the techniques developed recently for classical nuclei. We present practical
calculations based on density functional theory with a generalised-gradient
exchange-correlation functional for the case of HO on the MgO~(001) surface
at low coverage. We note that the very high vibrational frequencies of the
HO molecule would normally require very large numbers of time slices
(beads) in path-integral calculations, but we show that this requirement can be
dramatically reduced by employing the idea of thermodynamic integration with
respect to the number of beads. The validity and correctness of our
path-integral calculations on the HO/MgO~(001) system are demonstrated by
supporting calculations on a set of simple model systems for which quantum
contributions to the free energy are known exactly from analytic arguments.Comment: 11 pages, including 2 figure
The energetics of water on oxide surfaces by quantum Monte Carlo
Density functional theory (DFT) is widely used in surface science, but gives
poor accuracy for oxide surface processes, while high-level quantum chemistry
methods are hard to apply without losing basis-set quality. We argue that
quantum Monte Carlo techniques allow these difficulties to be overcome, and we
present diffusion Monte Carlo results for the formation energy of the MgO(001)
surface and the adsorption energy of HO on this surface, using periodic
slab geometry. The results agree well with experiment. We note other oxide
surface problems where these techniques could yield immediate progress.Comment: 5 pages, 2 figure
Comment on 'Molybdenum at High Pressure and Temperature: Melting from Another Solid Phase'
There has been a major controversy over the past seven years about the
high-pressure melting curves of transition metals. Static compression
(diamond-anvil cell: DAC) experiments up to the Mbar region give very low
melting slopes dT_m/dP, but shock-wave (SW) data reveal transitions indicating
much larger dT_m/dP values. Ab initio calculations support the correctness of
the shock data. In a very recent letter, Belonoshko et al. propose a simple and
elegant resolution of this conflict for molybdenum. Using ab initio
calculations based on density functional theory (DFT), they show that the
high-P/high-T phase diagram of Mo must be more complex than was hitherto
thought. Their calculations give convincing evidence that there is a transition
boundary between the normal bcc structure of Mo and a high-T phase, which they
suggest could be fcc. They propose that this transition was misinterpreted as
melting in DAC experiments. In confirmation, they note that their boundary also
explains a transition seen in the SW data. We regard Belonoshko et al.'s Letter
as extremely important, but we note that it raises some puzzling questions, and
we believe that their proposed phase diagram cannot be completely correct. We
have calculated the Helmholtz and Gibbs free energies of the bcc, fcc and hcp
phases of Mo, using essentially the same quasiharmonic methods as used by
Belonoshko et al.; we find that at high-P and T Mo in the hcp structure is more
stable than in bcc or fcc.Comment: 1 page, 1 figure. submitted to Phys. Rev. Let
Complementary approaches to the ab initio calculation of melting properties
Several research groups have recently reported {\em ab initio} calculations
of the melting properties of metals based on density functional theory, but
there have been unexpectedly large disagreements between results obtained by
different approaches. We analyze the relations between the two main approaches,
based on calculation of the free energies of solid and liquid and on direct
simulation of the two coexisting phases. Although both approaches rely on the
use of classical reference systems consisting of parameterized empirical
interaction models, we point out that in the free energy approach the final
results are independent of the reference system, whereas in the current form of
the coexistence approach they depend on it. We present a scheme for correcting
the predictions of the coexistence approach for differences between the
reference and {\em ab initio} systems. To illustrate the practical operation of
the scheme, we present calculations of the high-pressure melting properties of
iron using the corrected coexistence approach, which agree closely with earlier
results from the free energy approach. A quantitative assessment is also given
of finite-size errors, which we show can be reduced to a negligible size.Comment: 14 pages, two figure
Ab initio statistical mechanics of surface adsorption and desorption: I. HO on MgO (001) at low coverage
We present a general computational scheme based on molecular dynamics (m.d.)
simulation for calculating the chemical potential of adsorbed molecules in
thermal equilibrium on the surface of a material. The scheme is based on the
calculation of the mean force in m.d. simulations in which the height of a
chosen molecule above the surface is constrained, and subsequent integration of
the mean force to obtain the potential of mean force and hence the chemical
potential. The scheme is valid at any coverage and temperature, so that in
principle it allows the calculation of the chemical potential as a function of
coverage and temperature. It avoids all statistical mechanical approximations,
except for the use of classical statistical mechanics for the nuclei, and
assumes nothing in advance about the adsorption sites. From the chemical
potential, the absolute desorption rate of the molecules can be computed,
provided the equilibration rate on the surface is faster than the desorption
rate. We apply the theory by {\em ab initio} m.d. simulation to the case of
HO on MgO (001) in the low-coverage limit, using the Perdew-Burke-Ernzerhof
(PBE) form of exchange-correlation. The calculations yield an {\em ab initio}
value of the Polanyi-Wigner frequency prefactor, which is more than two orders
of magnitude greater than the value of s often assumed in the
past. Provisional comparison with experiment suggests that the PBE adsorption
energy may be too low, but the extension of the calculations to higher
coverages is needed before firm conclusions can be drawn. The possibility of
including quantum nuclear effects by using path-integral simulations is noted.Comment: 11 pages + 10 figure
Constraints on the phase diagram of molybdenum from first-principles free-energy calculations
We use first-principles techniques to re-examine the suggestion that
transitions seen in high-P experiments on Mo are solid-solid transitions from
the bcc structure to either the fcc or hcp structures. We confirm that in the
harmonic approximation the free energies of fcc and hcp structures become lower
than that of bcc at P > 325 GPa and T below the melting curve, as reported
recently. However, we show that if anharmonic effects are fully included this
is no longer true. We calculate fully anharmonic free energies of high-T
crystal phases by integration of the thermal average stress with respect to
strain as structures are deformed into each other, and also by thermodynamic
integration from harmonic reference systems to the fully anharmonic system. Our
finding that fcc is thermodynamically less stable than bcc in the relevant
high-P/high-T region is supported by comparing the melting curves of the two
structures calculated using the first-principles reference-coexistence
technique. We present first-principles simulations based on the recently
proposed Z method which also support the stability of bcc over fcc.Comment: 33 pages, 10 figure
- …