89 research outputs found

    Photodissociation of NO2 by pulsed laser light at 6943 A

    Get PDF
    Two photon absorption in photodissociation of nitrogen dioxide using pulsed laser at 6943

    Potential to measure quantum effects in recent all-optical radiation reaction experiments

    Get PDF
    The construction of 10 PW class laser facilities with unprecedented intensities has emphasized the need for a thorough understanding of the radiation reaction process. We describe simulations for a recent all-optical colliding pulse experiment, where a GeV scale electron bunch produced by a laser wakefield accelerator interacted with a counter-propagating laser pulse. In the rest frame of the electron bunch, the electric field of the laser pulse is increased by several orders of magnitude, approaching the Schwinger field and leading to substantial variation from the classical Landau-Lifshitz model. Our simulations show how the final electron and photon spectra may allow us to differentiate between stochastic and semi-classical models of radiation reaction, even when there is significant shot-to-shot variation in the experimental parameters. In particular, constraints are placed on the maximum energy spread and shot-to-shot variation permissible if a stochastic model is to be proven with confidence

    Optimal parameters for radiation reaction experiments

    Get PDF
    As new laser facilities are developed with intensities on the scale of 10^22 - 10^24 W cm^-2 , it becomes ever more important to understand the effect of strong field quantum electrodynamics processes, such as quantum radiation reaction, which will play a dominant role in laser-plasma interactions at these intensities. Recent all-optical experiments, where GeV electrons from a laser wakefield accelerator encountered a counter-propagating laser pulse with a_0 > 10, have produced evidence of radiation reaction, but have not conclusively identified quantum effects nor their most suitable theoretical description. Here we show the number of collisions and the conditions required to accomplish this, based on a simulation campaign of radiation reaction experiments under realistic conditions. We conclude that while the critical energy of the photon spectrum distinguishes classical and quantum-corrected models, a better means of distinguishing the stochastic and deterministic quantum models is the change in the electron energy spread. This is robust against shot-to-shot fluctuations and the necessary laser intensity and electron beam energies are already available. For example, we show that so long as the electron energy spread is below 25%, collisions at a_0 = 10 with electron energies of 500 MeV could differentiate between different quantum models in under 30 shots, even with shot to shot variations at the 50% level.Comment: 12 pages, 7 figure

    A comparison of Finite Elements for Nonlinear Beams: The absolute nodal coordinate and geometrically exact formulations

    Get PDF
    Two of the most popular finite element formulations for solving nonlinear beams are the absolute nodal coordinate and the geometrically exact approaches. Both can be applied to problems with very large deformations and strains, but they differ substantially at the continuous and the discrete levels. In addition, implementation and run-time computational costs also vary significantly. In the current work, we summarize the main features of the two formulations, highlighting their differences and similarities, and perform numerical benchmarks to assess their accuracy and robustness. The article concludes with recommendations for the choice of one formulation over the other

    Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    Get PDF
    The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (μ 500 MeV) with an intense laser pulse (a0>10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy >30 MeV

    Characterisation of Laser Wakefield Acceleration Efficiency with Octave Spanning Near-IR Spectrum Measurements

    Full text link
    We report on high efficiency energy transfer in a GeV-class laser wakefield accelerator. Both the transfer of energy from the laser to the plasma wakefield, and from the plasma to the accelerated electron beam were diagnosed experimentally by simultaneous measurement of the deceleration of laser photons and the accelerated electrons as a function of acceleration length. The extraction efficiency, which we define as the ratio of the energy gained by the electron beam to the energy lost by the self-guided laser mode, was maximised at 27±227\pm2 % by tuning of the plasma density, plasma length and incident laser pulse compression. At higher densities, the laser was observed to fully redshift over an entire octave, from 800~nm to 1600~nm.Comment: 7 pages, 5 figure

    Wakefield Generation in Hydrogen and Lithium Plasmas at FACET-II: Diagnostics and First Beam-Plasma Interaction Results

    Full text link
    Plasma Wakefield Acceleration (PWFA) provides ultrahigh acceleration gradients of 10s of GeV/m, providing a novel path towards efficient, compact, TeV-scale linear colliders and high brightness free electron lasers. Critical to the success of these applications is demonstrating simultaneously high gradient acceleration, high energy transfer efficiency, and preservation of emittance, charge, and energy spread. Experiments at the FACET-II National User Facility at SLAC National Accelerator Laboratory aim to achieve all of these milestones in a single stage plasma wakefield accelerator, providing a 10 GeV energy gain in a <1 m plasma with high energy transfer efficiency. Such a demonstration depends critically on diagnostics able to measure emittance with mm-mrad accuracy, energy spectra to determine both %-level energy spread and broadband energy gain and loss, incoming longitudinal phase space, and matching dynamics. This paper discusses the experimental setup at FACET-II, including the incoming beam parameters from the FACET-II linac, plasma sources, and diagnostics developed to meet this challenge. Initial progress on the generation of beam ionized wakes in meter-scale hydrogen gas is discussed, as well as commissioning of the plasma sources and diagnostics
    corecore