1,009 research outputs found
Distinguishing left- and right-handed molecules by two-step coherent pulses
Chiral molecules with broken parity symmetries can be modeled as quantum
systems with cyclic-transition structures. By using these novel properties, we
design two-step laser pulses to distinguish left- and right-handed molecules
from the enantiomers. After the applied pulse drivings, one kind chiral
molecules are trapped in coherent population trapping state, while the other
ones are pumped to the highest states for ionizations. Then, different chiral
molecules can be separated.Comment: 11 pages, 3 figures
Spin torque, tunnel-current spin polarization and magnetoresistance in MgO magnetic tunnel junctions
We examine the spin torque (ST) response of magnetic tunnel junctions (MTJs)
with ultra-thin MgO tunnel barrier layers to investigate the relationship
between the spin-transfer torque and the tunnel magnetoresistance (TMR) under
finite bias. We find that the spin torque per unit current exerted on the free
layer decreases by less than 10% over a bias range where the TMR decreases by
over 40%. We examine the implications of this result for various spin-polarized
tunneling models and find that it is consistent with magnetic-state-dependent
effective tunnel decay lengths.Comment: 4 pages, 3 figure
Within-species variation in foliar chemistry influences aquatic leaf litter decomposition
Leaf-litter inputs provide substrate and energy to stream systems. These contributions vary based on species-specific differences in litter quality, but little is known about how differences in litter quality within a species can affect ecosystem processes. Genetic variation within tree species, such as oaks and cottonwoods, affects ecosystem processes including decomposition and nutrient cycling in forest ecosystems and has the potential to do the same in streams. We collected litter from 5 genotypes of each of 4 different cottonwood cross types (Populus fremontii, Populus angustifolia, and natural F1 and backcross hybrids), grown in a common garden, and measured their decomposition rates using litter bags in the Weber River, Utah. The proportion of 35 species-specific P. fremontii restriction-fragment length polymorphism markers in the genotype explained 46% and genetically controlled phytochemical mechanisms (e.g., % soluble condensed tannin in litter) explained .72% of the variation in leaf-litter decomposition rate, respectively. Understanding how natural genetic variation in plants can affect ecosystem processes will provide baseline information with which to address the loss of genetic variation (through habitat fragmentation and global change) and altered genetic variation through hybridization with cultivars and transgenic manipulations in the wild
Forest gene diversity is correlated with the composition and function of soil microbial communities
The growing field of community and ecosystem genetics indicates that plant genotype and genotypic variation are important for structuring communities and ecosystem processes. Little is known, however, regarding the effects of stand gene diversity on soil communities and processes under field conditions. Utilizing natural genetic variation occurring in Populus spp. hybrid zones, we tested the hypothesis that stand gene diversity structures soil microbial communities and influences soil nutrient pools. We found significant unimodal patterns relating gene diversity to soil microbial community composition, microbial exoenzyme activity of a carbon‐acquiring enzyme, and availability of soil nitrogen. Multivariate analyses indicate that this pattern is due to the correlation between gene diversity, plant secondary chemistry, and the composition of the microbial community that impacts the availability of soil nitrogen. Together, these data from a natural system indicate that stand gene diversity may affect soil microbial communities and soil processes in ways similar to species diversity (i.e., unimodal patterns). Our results further demonstrate that the effects of plant genetic diversity on other organisms may be mediated by plant functional trait variation.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147191/1/pope0035.pd
Living with AMD treatment: Patient experiences of being treated with Ranibizumab (Lucentis) intravitreal injections
This study reports the results of a qualitative study of patient experiences of receiving treatment for wet age-related macular degeneration with ranibizumab (Lucentis)(R). Treatment involved monthly hospital visits for assessment and, where required, an intravitreal Lucentis injection. Qualitative narrative interviews were conducted with 22 patients, 18 of whom received treatment and were interviewed at two points during their treatment journey. Interviews allowed participants to reflect on their experiences of being assessed for and receiving this treatment. Overall, treated participants reported that while they had been apprehensive about treatment, the actual experience of it was far less unpleasant than they had expected. However, the data also revealed a number of issues surrounding the provision of information about treatment, as well as service delivery issues, which had considerable impact upon their experience
Interactive metagenomic visualization in a Web browser
<p>Abstract</p> <p>Background</p> <p>A critical output of metagenomic studies is the estimation of abundances of taxonomical or functional groups. The inherent uncertainty in assignments to these groups makes it important to consider both their hierarchical contexts and their prediction confidence. The current tools for visualizing metagenomic data, however, omit or distort quantitative hierarchical relationships and lack the facility for displaying secondary variables.</p> <p>Results</p> <p>Here we present Krona, a new visualization tool that allows intuitive exploration of relative abundances and confidences within the complex hierarchies of metagenomic classifications. Krona combines a variant of radial, space-filling displays with parametric coloring and interactive polar-coordinate zooming. The HTML5 and JavaScript implementation enables fully interactive charts that can be explored with any modern Web browser, without the need for installed software or plug-ins. This Web-based architecture also allows each chart to be an independent document, making them easy to share via e-mail or post to a standard Web server. To illustrate Krona's utility, we describe its application to various metagenomic data sets and its compatibility with popular metagenomic analysis tools.</p> <p>Conclusions</p> <p>Krona is both a powerful metagenomic visualization tool and a demonstration of the potential of HTML5 for highly accessible bioinformatic visualizations. Its rich and interactive displays facilitate more informed interpretations of metagenomic analyses, while its implementation as a browser-based application makes it extremely portable and easily adopted into existing analysis packages. Both the Krona rendering code and conversion tools are freely available under a BSD open-source license, and available from: <url>http://krona.sourceforge.net</url>.</p
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
Search for Gravitational Wave Bursts from Soft Gamma Repeaters
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with Soft Gamma Repeater (SGR) bursts. This is the first
search sensitive to neutron star f-modes, usually considered the most efficient
GW emitting modes. We find no evidence of GWs associated with any SGR burst in
a sample consisting of the 27 Dec. 2004 giant flare from SGR 1806-20 and 190
lesser events from SGR 1806-20 and SGR 1900+14 which occurred during the first
year of LIGO's fifth science run. GW strain upper limits and model-dependent GW
emission energy upper limits are estimated for individual bursts using a
variety of simulated waveforms. The unprecedented sensitivity of the detectors
allows us to set the most stringent limits on transient GW amplitudes published
to date. We find upper limit estimates on the model-dependent isotropic GW
emission energies (at a nominal distance of 10 kpc) between 3x10^45 and 9x10^52
erg depending on waveform type, detector antenna factors and noise
characteristics at the time of the burst. These upper limits are within the
theoretically predicted range of some SGR models.Comment: 6 pages, 1 Postscript figur
First LIGO search for gravitational wave bursts from cosmic (super)strings
We report on a matched-filter search for gravitational wave bursts from
cosmic string cusps using LIGO data from the fourth science run (S4) which took
place in February and March 2005. No gravitational waves were detected in 14.9
days of data from times when all three LIGO detectors were operating. We
interpret the result in terms of a frequentist upper limit on the rate of
gravitational wave bursts and use the limits on the rate to constrain the
parameter space (string tension, reconnection probability, and loop sizes) of
cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
All-sky LIGO Search for Periodic Gravitational Waves in the Early S5 Data
We report on an all-sky search with the LIGO detectors for periodic
gravitational waves in the frequency range 50--1100 Hz and with the frequency's
time derivative in the range -5.0E-9 Hz/s to zero. Data from the first eight
months of the fifth LIGO science run (S5) have been used in this search, which
is based on a semi-coherent method (PowerFlux) of summing strain power.
Observing no evidence of periodic gravitational radiation, we report 95%
confidence-level upper limits on radiation emitted by any unknown isolated
rotating neutron stars within the search range. Strain limits below 1.E-24 are
obtained over a 200-Hz band, and the sensitivity improvement over previous
searches increases the spatial volume sampled by an average factor of about 100
over the entire search band. For a neutron star with nominal equatorial
ellipticity of 1.0E-6, the search is sensitive to distances as great as 500
pc--a range that could encompass many undiscovered neutron stars, albeit only a
tiny fraction of which would likely be rotating fast enough to be accessible to
LIGO. This ellipticity is at the upper range thought to be sustainable by
conventional neutron stars and well below the maximum sustainable by a strange
quark star.Comment: 6 pages, 1 figur
- …