12,141 research outputs found
Masses of Open-Flavour Heavy-Light Hybrids from QCD Sum-Rules
We use QCD Laplace sum-rules to predict masses of open-flavour heavy-light
hybrids where one of the hybrid's constituent quarks is a charm or bottom and
the other is an up, down, or strange. We compute leading-order, diagonal
correlation functions of several hybrid interpolating currents, taking into
account QCD condensates up to dimension-six, and extract hybrid mass
predictions for all , as well as explore possible
mixing effects with conventional quark-antiquark mesons. Within theoretical
uncertainties, our results are consistent with a degeneracy between the
heavy-nonstrange and heavy-strange hybrids in all channels. We find a
similar mass hierarchy of , , and states (a state
lighter than essentially degenerate and states) in both the
charm and bottom sectors, and discuss an interpretation for the states.
If conventional meson mixing is present the effect is an increase in the hybrid
mass prediction, and we estimate an upper bound on this effect.Comment: 24 pages, 8 figures. Mass predictions updated from previous version
to reflect corrected sign error in sum rule analysis. Mixing analysis and
examination of higher weight sum-rules added. To be published in JHE
Universal scale factors relating mesonic fields and quark operators
Scale factor matrices relating mesonic fields in chiral Lagrangians and
quark-level operators of QCD sum-rules are shown to be constrained by chiral
symmetry, resulting in universal scale factors for each chiral nonet. Built
upon this interplay between chiral Lagrangians and QCD sum-rules, the scale
factors relating the isotriplet scalar mesons to their underlying quark
composite field were recently determined. It is shown that the same technique
when applied to isodoublet scalars reproduces the same scale factors,
confirming the universality property and further validating this connection
between chiral Lagrangians and QCD sum-rules which can have nontrivial impacts
on our understanding of the low-energy QCD, in general, and the physics of
scalar mesons in particular.Comment: 5 pages, 1 figure. arXiv admin note: text overlap with
arXiv:1909.0724
Evidence that process simulations reduce anxiety in patients receiving dental treatment: randomized exploratory trial
Process simulations β mental simulations that ask people to imagine the process of completing a task β have been shown to decrease anxiety in students facing hypothetical or psychological threats in the short term. The aim of the present study was to see whether process simulations could reduce anxiety in a sample of the general population attending a dental practice, and whether these effects could be sustained throughout treatment. Participants (N = 75) were randomized to an experimental condition where they were asked to simulate mentally the process of seeing the dentist, or to a control condition where they were asked to simulate mentally the outcome of seeing the dentist. Findings showed that participants in the experimental condition were significantly less anxious both before and after their consultations. Self-efficacy and self-esteem remained unchanged. This study suggests that process simulation is one active ingredient in anxiety treatment programs and further research is required to enhance its effects
- β¦