26,047 research outputs found
The mid-infrared extinction law in the darkest cores of the Pipe Nebula
Context. The properties of dust grains, in particular their size
distribution, are expected to differ from the interstellar medium to the
high-density regions within molecular clouds. Aims. We measure the mid-infrared
extinction law produced by dense material in molecular cloud cores. Since the
extinction at these wavelengths is caused by dust, the extinction law in cores
should depart from that found in low-density environments if the dust grains
have different properties. Methods. We use the unbiased LINES method to measure
the slope of the reddening vectors in color-color diagrams. We derive the
mid-infrared extinction law toward the dense cores B59 and FeSt 1-457 in the
Pipe Nebula over a range of visual extinction between 10 and 50 magnitudes,
using a combination of Spitzer/IRAC, and ESO NTT/VLT data. Results. The
mid-infrared extinction law in both cores departs significantly from a
power-law between 3.6 and 8 micron, suggesting that these cores contain dust
with a considerable fraction of large dust grains. We find no evidence for a
dependence of the extinction law with column density up to 50 magnitudes of
visual extinction in these cores, and no evidence for a variation between our
result and those for other clouds at lower column densities reported elsewhere
in the literature. This suggests that either large grains are present even in
low column density regions, or that the existing dust models need to be revised
at mid-infrared wavelengths. We find a small but significant difference in the
extinction law of the two cores, that we tentatively associate with the onset
of star formation in B59.Comment: 8 pages, 6 figures. Accepted to A&
The VISTA Orion mini-survey: star formation in the Lynds 1630 North cloud
The Orion cloud complex presents a variety of star formation mechanisms and
properties and it is still one of the most intriguing targets for star
formation studies. We present VISTA/VIRCAM near-infrared observations of the
L1630N star forming region, including the stellar clusters NGC 2068 and NGC
2071, in the Orion molecular cloud B and discuss them in combination with
Spitzer data. We select 186 young stellar object (YSO) candidates in the region
on the basis of multi-colour criteria, confirm the YSO nature of the majority
of them using published spectroscopy from the literature, and use this sample
to investigate the overall star formation properties in L1630N. The K-band
luminosity function of L1630N is remarkably similar to that of the Trapezium
cluster, i.e., it presents a broad peak in the range 0.3-0.7 M and a
fraction of sub-stellar objects of 20%. The fraction of YSOs still
surrounded by disk/envelopes is very high (85%) compared to other star
forming regions of similar age (1-2 Myr), but includes some uncertain
corrections for diskless YSOs. Yet, a possibly high disk fraction together with
the fact that 1/3 of the cloud mass has a gas surface density above the
threshold for star formation (129 M pc), points towards a
still on-going star formation activity in L1630N. The star formation efficiency
(SFE), star formation rate (SFR) and density of star formation of L1630N are
within the ranges estimated for galactic star forming regions by the Spitzer
"core to disk" and "Gould's Belt" surveys. However, the SFE and SFR are lower
than the average value measured in the Orion A cloud and, in particular, lower
than that in the southern regions of L1630. This might suggest different star
formation mechanisms within the L1630 cloud complex.Comment: 22 pages, 9 figure
Why is timing of bird migration advancing when individuals are not?
Recent advances in spring arrival dates have been reported in many migratory species but the mechanism driving these advances is unknown. As population declines are most widely reported in species that are not advancing migration, there is an urgent need to identify the mechanisms facilitating and constraining these advances. Individual plasticity in timing of migration in response to changing climatic conditions is commonly proposed to drive these advances but plasticity in individual migratory timings is rarely observed. For a shorebird population that has significantly advanced migration in recent decades, we show that individual arrival dates are highly consistent between years, but that the arrival dates of new recruits to the population are significantly earlier now than in previous years. Several mechanisms could drive advances in recruit arrival, none of which require individual plasticity or rapid evolution of migration timings. In particular, advances in nest-laying dates could result in advanced recruit arrival, if benefits of early hatching facilitate early subsequent spring migration. This mechanism could also explain why arrival dates of short-distance migrants, which generally return to breeding sites earlier and have greater scope for advance laying, are advancing more rapidly than long-distance migrants
Bioelectrochemical systems (BESs) towards conversion of carbon monoxide/syngas: A mini-review
Microbial conversion of carbon monoxide (CO)/syngas has been extensively investigated. The microbial conversion of CO/syngas offers numerous advantages over chemically catalyzed processes e.g. the specificity of the biocatalysts, the operation at ambient conditions and high conversion efficiencies. Bioelectrochemical systems (BESs) exploit the capacity of electrochemically active bacteria (EAB) to use insoluble electron acceptors or donors to produce electricity or added-value compounds. Electricity production from different organic sources in BESs has been broadly demonstrated, whereas electricity production from CO/syngas has been very little reported. Acetate oxidation by a consortium of carboxydotrophic and CO-tolerant EAB has been suggested to be the main pathway responsible for indirect electricity generation from CO/syngas. Although electricity production in BESs from several organic sources has been widely investigated, the interest on BESs research is currently moving to the production of added-value compounds by electro-fermentation (EF) processes. EF allows to modify redox balances by the use of electric circuits to fine tune metabolic pathways towards obtaining products with high economic value. Although EF has been widely studied, the potential of use CO-rich gas streams as substrate has been under explored. This review presents and discusses current advances on microbial conversion of CO/syngas in BESs.This study was supported by the Portuguese Foundation for Science and Technology (FCT), within the scope of the project “INNOVsyn - Innovative strategies for syngas fermentation” (POCI-01-0145-FEDER- 033177). This study was also supported by the FCT under the scope of the strategic funding of UIDB/04469/2020 unit and BioTecNorte oper-ation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio
Hawking Radiation in the Dilaton Gravity with a Non-Minimally Coupled Scalar Field
We discuss the two-dimensional dilaton gravity with a scalar field as the
source matter where the coupling with the gravity is given, besides the minimal
one, through an external field. This coupling generalizes the conformal anomaly
in the same way as those found in recent literature, but with a diferent
motivation. The modification to the Hawking radiation is calculated explicity
and shows an additional term that introduces a dependence on the (effective)
mass of the black-hole.Comment: 13 pages, latex file, no figures, to be published in IJM
Optimized cross-slot flow geometry for microfluidic extension rheometry
A precision-machined cross-slot flow geometry with a shape that has been optimized by numerical simulation of the fluid kinematics is fabricated and used to measure the extensional viscosity of a dilute polymer solution. Full-field birefringence microscopy is used to monitor the evolution and growth of macromolecular anisotropy along the stagnation point streamline, and we observe the formation of a strong and uniform birefringent strand when the dimensionless flow strength exceeds a critical Weissenberg number Wicrit 0:5. Birefringence and bulk pressure drop measurements provide self consistent estimates of the planar extensional viscosity of the fluid over a wide range of deformation rates (26 s1 "_ 435 s1) and are also in close agreement with numerical simulations performed by using a finitely extensible nonlinear elastic dumbbell model
3D gravity and non-linear cosmology
By the inclusion of an additional term, non-linear in the scalar curvature
, it is tested if dark energy could rise as a geometrical effect in 3D
gravitational formulations. We investigate a cosmological fluid obeying a
non-polytropic equation of state (the van der Waals equation) that is used to
construct the energy-momentum tensor of the sources, representing the
hypothetical inflaton in gravitational interaction with a matter contribution.
Following the evolution in time of the scale factor, its acceleration, and
the energy densities of constituents it is possible to construct the
description of an inflationary 3D universe, followed by a matter dominated era.
For later times it is verified that, under certain conditions, the non-linear
term in can generate the old 3D universe in accelerated expansion, where
the ordinary matter is represented by the barotropic limit of the van der Waals
constituent.Comment: 7 pages, to appear in Mod. Phys. Let
- …