11,687 research outputs found

    Color screening in a constituent quark model of hadronic matter

    Full text link
    The effect of color screening on the formation of a heavy quark-antiquark (QQˉQ\bar{Q}) bound state--such as the J/ψJ/\psi meson--is studied using a constituent-quark model. The response of the nuclear medium to the addition of two color charges is simulated directly in terms of its quark constituents via a string-flip potential that allows for quark confinement within hadrons yet enables the hadrons to separate without generating unphysical long-range forces. Medium modifications to the properties of the heavy meson, such as its energy and its mean-square radius, are extracted by solving Schr\"odinger's equation for the QQˉQ\bar{Q} pair in the presence of a (screened) density-dependent potential. The density dependence of the heavy-quark potential is in qualitative agreement with earlier studies of its temperature dependence extracted from lattice calculations at finite temperature. In the present model it is confirmed that abrupt changes in the properties of the J/ψJ/\psi-meson in the hadronic medium ({\it plasma}), correlate strongly with the deconfining phase transition.Comment: 7 pages, 3 figures, submitted to PRC for publication, uses revtex

    Feature Selection and Generalisation for Retrieval of Textual Cases

    Get PDF
    Textual CBR systems solve problems by reusing experiences that are in textual form. Knowledge-rich comparison of textual cases remains an important challenge for these systems. However mapping text data into a structured case representation requires a significant knowledge engineering effort. In this paper we look at automated acquisition of the case indexing vocabulary as a two step process involving feature selection followed by feature generalisation. Boosted decision stumps are employed as a means to select features that are predictive and relatively orthogonal. Association rule induction is employed to capture feature co-occurrence patterns. Generalised features are constructed by applying these rules. Essentially, rules preserve implicit semantic relationships between features and applying them has the desired effect of bringing together cases that would have otherwise been overlooked during case retrieval. Experiments with four textual data sets show significant improvement in retrieval accuracy whenever gener¬alised features are used. The results further suggest that boosted decision stumps with generalised features to be a promising combination

    QCD near the Light Cone

    Get PDF
    Starting from the QCD Lagrangian, we present the QCD Hamiltonian for near light cone coordinates. We study the dynamics of the gluonic zero modes of this Hamiltonian. The strong coupling solutions serve as a basis for the complete problem. We discuss the importance of zero modes for the confinement mechanism.Comment: 32 pages, ReVTeX, 2 Encapsulated PostScript figure

    Hidden Breit-Wigner distribution and other properties of random matrices with preferential basis

    Full text link
    We study statistical properties of a class of band random matrices which naturally appears in systems of interacting particles. The local spectral density is shown to follow the Breit-Wigner distribution in both localized and delocalized regimes with width independent on the band/system size. We analyse the implications of this distribution to the inverse participation ratio, level spacing statistics and the problem of two interacting particles in a random potential.Comment: 4 pages, 4 postscript figures appended, new version with minor change

    Transverse QCD Dynamics Near the Light Cone

    Full text link
    Starting from the QCD Hamiltonian in near-light cone coordinates, we study the dynamics of the gluonic zero modes. Euclidean 2+1 dimensional lattice simulations show that the gap at strong coupling vanishes at intermediate coupling. This result opens the possibility to synchronize the continuum limit with the approach to the light cone.Comment: 15 pages, LaTeX, 3 figures (7 PS files

    Quantum Mechanics of the Vacuum State in Two-Dimensional QCD with Adjoint Fermions

    Get PDF
    A study of two-dimensional QCD on a spatial circle with Majorana fermions in the adjoint representation of the gauge groups SU(2) and SU(3) has been performed. The main emphasis is put on the symmetry properties related to the homotopically non-trivial gauge transformations and the discrete axial symmetry of this model. Within a gauge fixed canonical framework, the delicate interplay of topology on the one hand and Jacobians and boundary conditions arising in the course of resolving Gauss's law on the other hand is exhibited. As a result, a consistent description of the residual ZNZ_N gauge symmetry (for SU(N)) and the ``axial anomaly" emerges. For illustrative purposes, the vacuum of the model is determined analytically in the limit of a small circle. There, the Born-Oppenheimer approximation is justified and reduces the vacuum problem to simple quantum mechanics. The issue of fermion condensates is addressed and residual discrepancies with other approaches are pointed out.Comment: 44 pages; for hardcopies of figures, contact [email protected]

    The effect of different opacity data and chemical element mixture on the Petersen diagram

    Full text link
    The Petersen diagram is a frequently used tool to constrain model parameters such as metallicity of radial double-mode pulsators. In this diagram the period ratio of the radial first overtone to the fundamental mode, P_1/P_0, is plotted against the period of the fundamental mode. The period ratio is sensitive to the chemical composition as well as to the rotational velocity of a star. In the present study we compute stellar pulsation models to demonstrate the sensitivity of the radial period ratio to the opacity data (OPAL and OP tables) and we also examine the effect of different relative abundances of heavy elements. We conclude that the comparison with observed period ratios could be used successfully to test the opacity data.Comment: 5 pages, 5 figures, 1 table; to be published in the Proceedings of the Conference 'Unsolved Problems in Stellar Physics', Cambridge, 2-6 July 200

    Air quality impact of a decision support system for reducing pollutant emissions: CARBOTRAF

    Get PDF
    Traffic congestion with frequent “stop & go” situations causes substantial pollutant emissions. Black carbon (BC) is a good indicator of combustion-related air pollution and results in negative health effects. Both BC and CO2 emissions are also known to contribute significantly to global warming. Current traffic control systems are designed to improve traffic flow and reduce congestion. The CARBOTRAF system combines real-time monitoring of traffic and air pollution with simulation models for emission and local air quality prediction in order to deliver on-line recommendations for alternative adaptive traffic management. The aim of introducing a CARBOTRAF system is to reduce BC and CO2 emissions and improve air quality by optimizing the traffic flows. The system is implemented and evaluated in two pilot cities, Graz and Glasgow. Model simulations link traffic states to emission and air quality levels. A chain of models combines micro-scale traffic simulations, traffic volumes, emission models and air quality simulations. This process is completed for several ITS scenarios and a range of traffic boundary conditions. The real-time DSS system uses these off-line model simulations to select optimal traffic and air quality scenarios. Traffic and BC concentrations are simultaneously monitored. In this paper the effects of ITS measures on air quality are analysed with a focus on BC

    Interference scheme to measure light-induced nonlinearities in Bose-Einstein condensates

    Full text link
    Light-induced nonlinear terms in the Gross-Pitaevskii equation arise from the stimulated coherent exchange of photons between two atoms. For atoms in an optical dipole trap this effect depends on the spatial profile of the trapping laser beam. Two different laser beams can induce the same trapping potential but very different nonlinearities. We propose a scheme to measure light-induced nonlinearities which is based on this observation.Comment: 2 figure
    corecore