4,349 research outputs found

    Detecting sterile neutrinos with KATRIN like experiments

    Full text link
    A sterile neutrino with mass in the eV range, mixing with the electron antineutrino, is allowed and possibly even preferred by cosmology and oscillation experiments. If such eV-mass neutrinos exist they provide a much better target for direct detection in beta decay experiments than the active neutrinos which are expected to have sub-eV masses. Their relatively high mass would allow for an easy separation from the primary decay signal in experiments such as KATRIN.Comment: 23 pages, 7 figures. References & Figures updated. Text reviewed and revised. Accepted for publication JCA

    Ab initio Molecular Dynamics in Adaptive Coordinates

    Full text link
    We present a new formulation of ab initio molecular dynamics which exploits the efficiency of plane waves in adaptive curvilinear coordinates, and thus provides an accurate treatment of first-row elements. The method is used to perform a molecular dynamics simulation of the CO_2 molecule, and allows to reproduce detailed features of its vibrational spectrum such as the splitting of the Raman sigma+_g mode caused by Fermi resonance. This new approach opens the way to highly accurate ab initio simulations of organic compounds.Comment: 11 pages, 3 PostScript figure

    Using BBN in cosmological parameter extraction from CMB: a forecast for Planck

    Full text link
    Data from future high-precision Cosmic Microwave Background (CMB) measurements will be sensitive to the primordial Helium abundance YpY_p. At the same time, this parameter can be predicted from Big Bang Nucleosynthesis (BBN) as a function of the baryon and radiation densities, as well as a neutrino chemical potential. We suggest to use this information to impose a self-consistent BBN prior on YpY_p and determine its impact on parameter inference from simulated Planck data. We find that this approach can significantly improve bounds on cosmological parameters compared to an analysis which treats YpY_p as a free parameter, if the neutrino chemical potential is taken to vanish. We demonstrate that fixing the Helium fraction to an arbitrary value can seriously bias parameter estimates. Under the assumption of degenerate BBN (i.e., letting the neutrino chemical potential ξ\xi vary), the BBN prior's constraining power is somewhat weakened, but nevertheless allows us to constrain ξ\xi with an accuracy that rivals bounds inferred from present data on light element abundances.Comment: 14 pages, 4 figures; v2: minor changes, matches published versio

    The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table

    Full text link
    First-principles calculations in crystalline structures are often performed with a planewave basis set. To make the number of basis functions tractable two approximations are usually introduced: core electrons are frozen and the diverging Coulomb potential near the nucleus is replaced by a smoother expression. The norm-conserving pseudopotential was the first successful method to apply these approximations in a fully ab initio way. Later on, more efficient and more exact approaches were developed based on the ultrasoft and the projector augmented wave formalisms. These formalisms are however more complex and developing new features in these frameworks is usually more difficult than in the norm-conserving framework. Most of the existing tables of norm- conserving pseudopotentials, generated long ago, do not include the latest developments, are not systematically tested or are not designed primarily for high accuracy. In this paper, we present our PseudoDojo framework for developing and testing full tables of pseudopotentials, and demonstrate it with a new table generated with the ONCVPSP approach. The PseudoDojo is an open source project, building on the AbiPy package, for developing and systematically testing pseudopotentials. At present it contains 7 different batteries of tests executed with ABINIT, which are performed as a function of the energy cutoff. The results of these tests are then used to provide hints for the energy cutoff for actual production calculations. Our final set contains 141 pseudopotentials split into a standard and a stringent accuracy table. In total around 70.000 calculations were performed to test the pseudopotentials. The process of developing the final table led to new insights into the effects of both the core-valence partitioning and the non-linear core corrections on the stability, convergence, and transferability of norm-conserving pseudopotentials. ...Comment: abstract truncated, 17 pages, 25 figures, 8 table

    Cosmological bounds on pseudo Nambu-Goldstone bosons

    Full text link
    We review the cosmological implications of a relic population of pseudo Nambu-Goldstone bosons (pNGB) with an anomalous coupling to two photons, often called axion-like particles (ALPs). We establish constraints on the pNGB mass and two-photon coupling by considering big bang nucleosynthesis, the physics of the cosmic microwave background, and the diffuse photon background. The bounds from WMAP7 and other large-scale-structure data on the effective number of neutrino species can be stronger than the traditional bounds from the primordial helium abundance. These bounds, together with those from primordial deuterium abundance, constitute the most stringent probes of early decays.Comment: 29 pages, 13 pictures. Enlarged discussions on BBN and recombination constraints. One figure and several references added. Version accepted in JCA

    Asymmetric Dark Matter and Dark Radiation

    Get PDF
    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum.Comment: 22 pages, 5 figures, to be published in JCAP, minor changes to match version to be publishe

    Stagnation and Infall of Dense Clumps in the Stellar Wind of tau Scorpii

    Full text link
    Observations of the B0.2V star tau Scorpii have revealed unusual stellar wind characteristics: red-shifted absorption in the far-ultraviolet O VI resonance doublet up to +250 km/s, and extremely hard X-ray emission implying gas at temperatures in excess of 10^7 K. We describe a phenomenological model to explain these properties. We assume the wind of tau Sco consists of two components: ambient gas in which denser clumps are embedded. The clumps are optically thick in the UV resonance lines primarily responsible for accelerating the ambient wind. The reduced acceleration causes the clumps to slow and even infall, all the while being confined by the ram pressure of the outflowing ambient wind. We calculate detailed trajectories of the clumps in the ambient stellar wind, accounting for a line radiation driving force and the momentum deposited by the ambient wind in the form of drag. We show these clumps will fall back towards the star with velocities of several hundred km/sec for a broad range of initial conditions. The infalling clumps produce X-ray emitting plasmas with temperatures in excess of (1-6)x10^7 K in bow shocks at their leading edge. The infalling material explains the peculiar red-shifted absorption wings seen in the O VI doublet. The required mass loss in clumps is 3% - 30% ofthe total mass loss rate. The model developed here can be generally applied to line-driven outflows with clumps or density irregularities. (Abstract Abridged)Comment: To appear in the ApJ (1 May 2000). 24 pages, including 6 embedded figure

    Systematic treatment of displacements, strains and electric fields in density-functional perturbation theory

    Full text link
    The methods of density-functional perturbation theory may be used to calculate various physical response properties of insulating crystals including elastic, dielectric, Born charge, and piezoelectric tensors. These and other important tensors may be defined as second derivatives of the total energy with respect to atomic-displacement, electric-field, or strain perturbations, or as mixed derivatives with respect to two of these perturbations. The resulting tensor quantities tend to be coupled in complex ways in polar crystals, giving rise to a variety of variant definitions. For example, it is generally necessary to distinguish between elastic tensors defined under different electrostatic boundary conditions, and between dielectric tensors defined under different elastic boundary conditions. Here, we describe an approach for computing all of these various response tensors in a unified and systematic fashion. Applications are presented for two materials, wurtzite ZnO and rhombohedral BaTiO3, at zero temperature.Comment: 14 pages. Uses REVTEX macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/xfw_sys/index.htm
    corecore