815 research outputs found
Point-contact spectroscopy in heavy-fermion superconductors
We develop a minimal model to calculate point-contact spectra between a
metallic tip and a superconducting heavy-fermion system. We apply our tunneling
model to the heavy fermion CeCoIn5, both in the normal and superconducting
state. In point-contact and scanning tunneling spectroscopy many heavy-fermion
materials, like CeCoIn5, exhibit an asymmetric differential conductance, dI/dV,
combined with a strongly suppressed Andreev reflection signal in the
superconducting state. We argue that both features may be explained in terms of
a multichannel tunneling model in the presence of localized states near the
interface. We find that it is not sufficient to tunnel into two itinerant bands
of light and heavy electrons to explain the Fano line shape of the differential
conductance. Localized states in the bulk or near the interface are an
essential component for quantum interference to occur when an electron tunnels
from the metallic tip of the point contact into the heavy-fermion system.Comment: 13 pages, 9 figures. Accepted for publication in Physical Review
Hall conductance of a pinned vortex lattice in a high magnetic field
We calculate the quasiparticle contribution to the zero temperature Hall
conductance of two-dimensional extreme type-II superconductors in a high
magnetic field, using the Landau basis. As one enters the superconducting phase
the Hall conductance is renormalized to smaller values, with respect to the
normal state result, until a quantum level-crossing transition is reached. At
high values of the order parameter, where the quasiparticles are bound to the
vortex cores, the Hall conductance is expected to tend to zero due to a theorem
of Thouless.Comment: To appear in Journ. Phys. : Cond. Matte
Spectroscopic Evidence for Multiple Order Parameter Components in the Heavy Fermion Superconductor CeCoIn_5
Point-contact spectroscopy was performed on single crystals of the
heavy-fermion superconductor CeCoIn_5 between 150 mK and 2.5 K. A pulsed
measurement technique ensured minimal Joule heating over a wide voltage range.
The spectra show Andreev-reflection characteristics with multiple structures
which depend on junction impedance. Spectral analysis using the generalized
Blonder-Tinkham-Klapwijk formalism for d-wave pairing revealed two coexisting
order parameter components, with amplitudes Delta_1 = 0.95 +/- 0.15 meV and
Delta_2 = 2.4 +/- 0.3 meV, which evolve differently with temperature. Our
observations indicate a highly unconventional pairing mechanism, possibly
involving multiple bands.Comment: 4 pages, 3 figure
Large Broadening of the Superconducting Transition by Fluctuations in a 3D Metal at High Magnetic Fields: The MgB case
It is shown that the transition to the low temperature superconducting state
in a 3D metal at high magnetic field is smeared dramatically by thermal
fluctuation of the superconducting order parameter. The resulting
superconducting-to-normal crossover occurs in a vortex liquid state which is
extended well below the mean-field . Application to MgB yields
good quantitative agreement with recently reported data of dHvA oscillation in
the superconducting state
Barriers to social participation among lonely older adults: the influence of social fears and identity
INTRODUCTION: Loneliness among older adults is a major public health problem that may be associated with processes of social participation and identity. This study therefore sought to examine the relationship between social participation and identity in a sample of lonely older adults living independently in London, England.
METHOD: An inductive qualitative approach, based on semi-structured interviews and thematic analysis, was employed.
RESULTS: Participants commonly spoke of barriers to social participation that have been reported elsewhere, including illness/disability, loss of contact with friends/relatives, lack of a supportive community, and lack of acceptable social opportunities. However, novel findings were also derived. In particular, participants commonly minimised the difficulties they faced alone, and described attempts to avoid social opportunities. These behaviours were linked to fears about engaging in social participation opportunities, including fears of social rejection and/or exploitation, and fears of losing valued aspects of identity.
DISCUSSION: It is concluded that social participation amongst lonely older people will not improve through the removal of previously reported barriers alone; instead, older peoples’ beliefs, fears and identities must be addressed. Suggestions for implementing these findings within community organisations are provided
Local Anisotropy of Fluids using Minkowski Tensors
Statistics of the free volume available to individual particles have
previously been studied for simple and complex fluids, granular matter,
amorphous solids, and structural glasses. Minkowski tensors provide a set of
shape measures that are based on strong mathematical theorems and easily
computed for polygonal and polyhedral bodies such as free volume cells (Voronoi
cells). They characterize the local structure beyond the two-point correlation
function and are suitable to define indices of
local anisotropy. Here, we analyze the statistics of Minkowski tensors for
configurations of simple liquid models, including the ideal gas (Poisson point
process), the hard disks and hard spheres ensemble, and the Lennard-Jones
fluid. We show that Minkowski tensors provide a robust characterization of
local anisotropy, which ranges from for vapor
phases to for ordered solids. We find that for fluids,
local anisotropy decreases monotonously with increasing free volume and
randomness of particle positions. Furthermore, the local anisotropy indices
are sensitive to structural transitions in these simple
fluids, as has been previously shown in granular systems for the transition
from loose to jammed bead packs
A Damping of the de Haas-van Alphen Oscillations in the superconducting state
Deploying a recently developed semiclassical theory of quasiparticles in the
superconducting state we study the de Haas-van Alphen effect. We find that the
oscillations have the same frequency as in the normal state but their amplitude
is reduced. We find an analytic formulae for this damping which is due to
tunnelling between semiclassical quasiparticle orbits comprising both
particle-like and hole-like segments. The quantitative predictions of the
theory are consistent with the available data.Comment: 7 pages, 5 figure
Theory of tunneling conductance for normal metal/insulator/triplet superconductor junctions
Tunneling conductance spectra of normal metal/insulator/triplet
superconductor junctions are investigated theoretically. As triplet paring
states we select several types of symmetries that are promising candidates for
the superconducting states in UPt and in SrRuO. The
calculated conductance spectra are sensitive to the orientation of the junction
which reflects the anisotropy of the pairing states. They show either zero-bias
conductance peaks or gap-like structures depending on the orientation of the
junctions. The existence of a residual density of states, peculiar to
nonunitary states, is shown to have a significant influence on the properties
of the conductance spectra. Present results serve as a guidefor the
experimental determination of the symmetry of the pair potentials in UPt
and SrRuO.Comment: 10 pages, 11 eps figures, J.Phys.Soc.Jpn.67,No.9(1998
- …