14,371 research outputs found

    Ultra-Short Optical Pulse Generation with Single-Layer Graphene

    Full text link
    Pulses as short as 260 fs have been generated in a diode-pumped low-gain Er:Yb:glass laser by exploiting the nonlinear optical response of single-layer graphene. The application of this novel material to solid-state bulk lasers opens up a way to compact and robust lasers with ultrahigh repetition rates.Comment: 6 pages, 3 figures, to appear in Journal of Nonlinear Optical Physics & Material

    Chaotic Waveguide-Based Resonators for Microlasers

    Full text link
    We propose the construction of highly directional emission microlasers using two-dimensional high-index semiconductor waveguides as {\it open} resonators. The prototype waveguide is formed by two collinear leads connected to a cavity of certain shape. The proposed lasing mechanism requires that the shape of the cavity yield mixed chaotic ray dynamics so as to have the appropiate (phase space) resonance islands. These islands allow, via Heisenberg's uncertainty principle, the appearance of quasi bound states (QBS) which, in turn, propitiate the lasing mechanism. The energy values of the QBS are found through the solution of the Helmholtz equation. We use classical ray dynamics to predict the direction and intensity of the lasing produced by such open resonators for typical values of the index of refraction.Comment: 5 pages, 5 figure

    Laser Velocimeter Measurements in the Leakage Annulus of a Whirling Shrouded Centrifugal Pump

    Get PDF
    Previous experiments conducted in the Rotor Force Test Facility at the California Institute of Technology have thoroughly examined the effect of leakage flows on the rotordynamic forces on a centrifugal pump impeller undergoing a prescribed circular whirl. These leakage flows have been shown to contribute substantially to the total fluid induced forces acting on a pump. However, to date nothing is known of the flow field in the leakage annulus of shrouded centrifugal pumps. No attempt has been made to qualitatively or quantitatively examine the velocity field in the leakage annulus. Hence the test objective of this experiment is to acquire fluid velocity data for a geometry representative of the leakage annulus of a shrouded centrifugal pump while the rotor is whirling using laser velocimetry. Tests are performed over a range of whirl ratios and a flowrate typical of Space Shuttle Turbopump designs. In addition to a qualitive study of the flow field, the velocity data can be used to anchor flow models

    Periodic Chaotic Billiards: Quantum-Classical Correspondence in Energy Space

    Full text link
    We investigate the properties of eigenstates and local density of states (LDOS) for a periodic 2D rippled billiard, focusing on their quantum-classical correspondence in energy representation. To construct the classical counterparts of LDOS and the structure of eigenstates (SES), the effects of the boundary are first incorporated (via a canonical transformation) into an effective potential, rendering the one-particle motion in the 2D rippled billiard equivalent to that of two-interacting particles in 1D geometry. We show that classical counterparts of SES and LDOS in the case of strong chaotic motion reveal quite a good correspondence with the quantum quantities. We also show that the main features of the SES and LDOS can be explained in terms of the underlying classical dynamics, in particular of certain periodic orbits. On the other hand, statistical properties of eigenstates and LDOS turn out to be different from those prescribed by random matrix theory. We discuss the quantum effects responsible for the non-ergodic character of the eigenstates and individual LDOS that seem to be generic for this type of billiards with a large number of transverse channels.Comment: 13 pages, 18 figure
    • …
    corecore