14,371 research outputs found
Ultra-Short Optical Pulse Generation with Single-Layer Graphene
Pulses as short as 260 fs have been generated in a diode-pumped low-gain
Er:Yb:glass laser by exploiting the nonlinear optical response of single-layer
graphene. The application of this novel material to solid-state bulk lasers
opens up a way to compact and robust lasers with ultrahigh repetition rates.Comment: 6 pages, 3 figures, to appear in Journal of Nonlinear Optical Physics
& Material
Chaotic Waveguide-Based Resonators for Microlasers
We propose the construction of highly directional emission microlasers using
two-dimensional high-index semiconductor waveguides as {\it open} resonators.
The prototype waveguide is formed by two collinear leads connected to a cavity
of certain shape. The proposed lasing mechanism requires that the shape of the
cavity yield mixed chaotic ray dynamics so as to have the appropiate (phase
space) resonance islands. These islands allow, via Heisenberg's uncertainty
principle, the appearance of quasi bound states (QBS) which, in turn,
propitiate the lasing mechanism. The energy values of the QBS are found through
the solution of the Helmholtz equation. We use classical ray dynamics to
predict the direction and intensity of the lasing produced by such open
resonators for typical values of the index of refraction.Comment: 5 pages, 5 figure
Laser Velocimeter Measurements in the Leakage Annulus of a Whirling Shrouded Centrifugal Pump
Previous experiments conducted in the Rotor Force Test Facility at the California Institute of Technology have thoroughly examined the effect of leakage flows on the rotordynamic forces on a centrifugal pump impeller undergoing a prescribed circular whirl. These leakage flows have been shown to contribute substantially to the total fluid induced forces acting on a pump. However, to date nothing is known of the flow field in the leakage annulus of shrouded centrifugal pumps. No attempt has been made to qualitatively or quantitatively examine the velocity field in the leakage annulus. Hence the test objective of this experiment is to acquire fluid velocity data for a geometry representative of the leakage annulus of a shrouded centrifugal pump while the rotor is whirling using laser velocimetry. Tests are performed over a range of whirl ratios and a flowrate typical of Space Shuttle Turbopump designs. In addition to a qualitive study of the flow field, the velocity data can be used to anchor flow models
Periodic Chaotic Billiards: Quantum-Classical Correspondence in Energy Space
We investigate the properties of eigenstates and local density of states
(LDOS) for a periodic 2D rippled billiard, focusing on their quantum-classical
correspondence in energy representation. To construct the classical
counterparts of LDOS and the structure of eigenstates (SES), the effects of the
boundary are first incorporated (via a canonical transformation) into an
effective potential, rendering the one-particle motion in the 2D rippled
billiard equivalent to that of two-interacting particles in 1D geometry. We
show that classical counterparts of SES and LDOS in the case of strong chaotic
motion reveal quite a good correspondence with the quantum quantities. We also
show that the main features of the SES and LDOS can be explained in terms of
the underlying classical dynamics, in particular of certain periodic orbits. On
the other hand, statistical properties of eigenstates and LDOS turn out to be
different from those prescribed by random matrix theory. We discuss the quantum
effects responsible for the non-ergodic character of the eigenstates and
individual LDOS that seem to be generic for this type of billiards with a large
number of transverse channels.Comment: 13 pages, 18 figure
- …