1,490 research outputs found
Contact Surface Area: A Novel Signal for Heart Rate Estimation in Smartphone Videos
We consider the problem of smartphone video-based heart rate estimation,
which typically relies on measuring the green color intensity of the user's
skin. We describe a novel signal in fingertip videos used for smartphone-based
heart rate estimation: fingertip contact surface area. We propose a model
relating contact surface area to pressure, and validate it on a dataset of 786
videos from 62 participants by demonstrating a statistical correlation between
contact surface area and green color intensity. We estimate heart rate on our
dataset with two algorithms, a baseline using the green signal only and a novel
algorithm based on both color and area. We demonstrate lower rates of
substantial errors (>10 beats per minute) using the novel algorithm (4.1%),
compared both to the baseline algorithm (6.4%) and to published results using
commercial color-based applications (>6%)
Effect of a Rapid Blade-Pitch Increase on the Thrust and Induced-Velocity Response of a Full-Scale Helicopter Rotor
A method has been proposed for predicting the effect of a rapid blade-pitch increase on the thrust and induced-velocity response of a helicopter rotor. General equations have been derived for the ensuing motion of the helicopter. These equations yield time histories of thrust, induced velocity, and helicopter vertical velocity for given rates of blade-pitch-angle changes and given rotor-angular-velocity time histories. The results of the method have been compared with experimental results obtained with a rotor mounted on the Langley helicopter test tower. The calculated and experimental results are in good agreement, although, in general, the calculated thrust-coefficient overshoots are about 10 percent greater than those obtained experimentally
A Classification-based Approach for Approximate Reachability
Hamilton-Jacobi (HJ) reachability analysis has been developed over the past
decades into a widely-applicable tool for determining goal satisfaction and
safety verification in nonlinear systems. While HJ reachability can be
formulated very generally, computational complexity can be a serious impediment
for many systems of practical interest. Much prior work has been devoted to
computing approximate solutions to large reachability problems, yet many of
these methods may only apply to very restrictive problem classes, do not
generate controllers, and/or can be extremely conservative. In this paper, we
present a new method for approximating the optimal controller of the HJ
reachability problem for control-affine systems. While also a specific problem
class, many dynamical systems of interest are, or can be well approximated, by
control-affine models. We explicitly avoid storing a representation of the
reachability value function, and instead learn a controller as a sequence of
simple binary classifiers. We compare our approach to existing grid-based
methodologies in HJ reachability and demonstrate its utility on several
examples, including a physical quadrotor navigation task
UDP-Galactose 4β²-Epimerase Activities toward UDP-Gal and UDP-GalNAc Play Different Roles in the Development of Drosophila melanogaster
In both humans and Drosophila melanogaster, UDP-galactose 4β²-epimerase (GALE) catalyzes two distinct reactions, interconverting UDP-galactose (UDP-gal) and UDP-glucose (UDP-glc) in the final step of the Leloir pathway of galactose metabolism, and also interconverting UDP-N-acetylgalactosamine (UDP-galNAc) and UDP-N-acetylglucosamine (UDP-glcNAc). All four of these UDP-sugars serve as vital substrates for glycosylation in metazoans. Partial loss of GALE in humans results in the spectrum disorder epimerase deficiency galactosemia; partial loss of GALE in Drosophila melanogaster also results in galactose-sensitivity, and complete loss in Drosophila is embryonic lethal. However, whether these outcomes in both humans and flies result from loss of one GALE activity, the other, or both has remained unknown. To address this question, we uncoupled the two activities in a Drosophila model, effectively replacing the endogenous dGALE with prokaryotic transgenes, one of which (Escherichia coli GALE) efficiently interconverts only UDP-gal/UDP-glc, and the other of which (Plesiomonas shigelloides wbgU) efficiently interconverts only UDP-galNAc/UDP-glcNAc. Our results demonstrate that both UDP-gal and UDP-galNAc activities of dGALE are required for Drosophila survival, although distinct roles for each activity can be seen in specific windows of developmental time or in response to a galactose challenge. By extension, these data also suggest that both activities might play distinct and essential roles in humans
- β¦