797 research outputs found

    Epoxide based inhibitors of the hepatitis C virus non-structural 2 autoprotease

    Get PDF
    Hepatitis C virus (HCV) non-structural 2 (NS2) encodes an essential protease activity responsible for processing at the NS2-NS3 junction which represents an attractive antiviral target. Attempts to inhibit the NS2 autoprotease with mechanism-based protease inhibitors and substrate peptides have had limited success. We report a series of epoxide-containing small molecules capable of blocking NS2-NS3 proteolysis in vitro and demonstrate the potential for selectivity towards the NS2 autoprotease. A compound within this series was able to perturb HCV genome replication in a subgenomic replicon system only when polyprotein processing was dependent on NS2 autoprotease activity, in addition it inhibited replication of full length HCV. These findings suggest blocking HCV polyprotein processing through inhibition of the NS2 autoprotease represents a viable route to exert an antiviral effect

    Structure and evolution of the intracratonic Congo Basin

    Get PDF
    Surface wave tomography, heat flow, and crustal thickness measurements have demonstrated that the thickness of the continental lithosphere varies by at least a factor of 2. Since the thermal time constant of the lithosphere depends upon the square of its thickness, subsidence records of extensional sedimentary basins offer a potential way of extending these observations into the past. Here we examine the Congo basin, a large and iconic intracratonic sedimentary basin in Central Africa. This roughly circular basin covers an area in excess of 1.4 × 106 km2 with more than 5 km thickness of sedimentary rocks, the oldest parts of which are late Precambrian in age. First, we assess the thickness of the lithosphere. We have estimated its thickness across Africa using maps of shear wave velocity obtained by inversion of fundamental and higher-mode surface waveforms. The Congo Basin sits on 220 ± 30 km thick lithosphere and appears to be part of a southern core to the continent encompassing both Archean cratons and Proterozoic mobile belts. This thickness is consistent with published estimates from kimberlites. Reappraisal of legacy seismic reflection images demonstrates that the sedimentary section is underlain by a Late Precambrian rift zone and that the basin is still subsiding today. Subsidence modeling of two deep wells is consistent with uniform extension and cooling of the lithosphere by a factor of 1.2 during latest Precambrian and Cambrian time; we argue that the exceptional 0.55 Ga history of the basin is a direct consequence of the lithospheric thermal time constant being a factor of 4 longer than normal. Today, the basin coincides with a long-wavelength −30 to −40 mGal gravity anomaly. We interpret this gravity anomaly as the surficial manifestation of 400–600 m of recent mantle convective drawdown in response to the onset of upwelling plumes around the flanks of the southern African continent. The alternative explanation, that it is the static manifestation of locally thick lithosphere, is inconsistent with global trends of mantle density depletion. Our interpretation is consistent with fast seismic velocities observed throughout the sublithospheric upper mantle underneath the basin and recent geodynamic modeling

    Recurrent pregnancy loss is associated with a pro-senescent decidual response during the peri-implantation window

    Get PDF
    During the implantation window, the endometrium becomes poised to transition to a pregnant state, a process driven by differentiation of stromal cells into decidual cells (DC). Perturbations in this process, termed decidualization, leads to breakdown of the feto-maternal interface and miscarriage, but the underlying mechanisms are poorly understood. Here, we reconstructed the decidual pathway at single-cell level in vitro and demonstrate that stromal cells first mount an acute stress response before emerging as DC or senescent DC (snDC). In the absence of immune cell-mediated clearance of snDC, secondary senescence transforms DC into progesterone-resistant cells that abundantly express extracellular matrix remodelling factors. Additional single-cell analysis of midluteal endometrium identified DIO2 and SCARA5 as marker genes of a diverging decidual response in vivo. Finally, we report a conspicuous link between a pro-senescent decidual response in peri-implantation endometrium and recurrent pregnancy loss, suggesting that pre-pregnancy screening and intervention may reduce the burden of miscarriage

    Continental margin subsidence from shallow mantle convection: Example from West Africa

    Full text link
    Spatial and temporal evolution of the uppermost convecting mantle plays an important role in determining histories of magmatism, uplift, subsidence, erosion and deposition of sedimentary rock. Tomographic studies and mantle flow models suggest that changes in lithospheric thickness can focus convection and destabilize plates. Geologic observations that constrain the processes responsible for onset and evolution of shallow mantle convection are sparse. We integrate seismic, well, gravity, magmatic and tomographic information to determine the history of Neogene-Recent (+100 °C providing ∼103 m of support. Beneath the Mauritania basin average excess temperatures are <−100 °C drawing down the lithosphere by ∼102 to 103 m. Up- and downwelling mantle has generated a bathymetric gradient of ∼1/300 at a wavelength of ∼103 km during the last ∼23 Ma. Our results suggest that asthenospheric flow away from upwelling mantle can generate downwelling beneath continental margins

    Identification of Ribonuclease Inhibitors for the Control of Pathogenic Bacteria

    Get PDF
    Funding Information: This work was funded by FCT\u2014Funda\u00E7\u00E3o para a Ci\u00EAncia e a Tecnologia, I. P., through the projects MOSTMICRO-ITQB (UIDB/04612/2020 and UIDP/04612/2020), and LS4FUTURE Associated Laboratory-LA/P/0087/2020. RGM was supported by an FCT contract (CEECIND/02065/2017: https://doi.org/10.54499/CEECIND/02065/2017/CP1428/CT0006). K.J.S. was supported by EU FP7 European Drug Initiative on Channels and Transporters (grant agreement ID: 201924). Publisher Copyright: © 2024 by the authors.Bacteria are known to be constantly adapting to become resistant to antibiotics. Currently, efficient antibacterial compounds are still available; however, it is only a matter of time until these compounds also become inefficient. Ribonucleases are the enzymes responsible for the maturation and degradation of RNA molecules, and many of them are essential for microbial survival. Members of the PNPase and RNase II families of exoribonucleases have been implicated in virulence in many pathogens and, as such, are valid targets for the development of new antibacterials. In this paper, we describe the use of virtual high-throughput screening (vHTS) to identify chemical compounds predicted to bind to the active sites within the known structures of RNase II and PNPase from Escherichia coli. The subsequent in vitro screening identified compounds that inhibited the activity of these exoribonucleases, with some also affecting cell viability, thereby providing proof of principle for utilizing the known structures of these enzymes in the pursuit of new antibacterials.publishe

    Success after failure : the role of endometrial stem cells in recurrent miscarriage

    Get PDF
    Endometrial stem-like cells, including mesenchymal stem cells (MSCs) and epithelial progenitor cells, are essential for cyclic regeneration of the endometrium following menstrual shedding. Emerging evidence indicates that endometrial MSCs (eMSCs) constitute a dynamic population of cells that enables the endometrium to adapt in response to a failed pregnancy. Recurrent miscarriage is associated with relative depletion of endometrial eMSCs, which not only curtails the intrinsic ability of the endometrium to adapt to reproductive failure but also compromises endometrial decidualization, an obligatory transformation process for embryo implantation. These novel findings should pave the way for more effective screening of women at risk of pregnancy failure prior to conception

    Impact of sitagliptin on endometrial mesenchymal stem-like progenitor cells : a randomised, double-blind placebo-controlled feasibility trial

    Get PDF
    Background: Recurrent pregnancy loss (RPL) is associated with the loss of endometrial mesenchymal stem-like progenitor cells (eMSC). DPP4 inhibitors may increase homing and engraftment of bone marrow-derived cells to sites of tissue injury. Here, we evaluated the effect of the DPP4 inhibitor sitagliptin on eMSC in women with RPL, determined the impact on endometrial decidualization, and assessed the feasibility of a full-scale clinical trial. Methods: A double-blind, randomised, placebo-controlled feasibility trial on women aged 18 to 42 years with a history of 3 or more miscarriages, regular menstrual cycles, and no contraindications to sitagliptin. Thirty-eight subjects were randomised to either 100 mg sitagliptin daily for 3 consecutive cycles or identical placebo capsules. Computer generated, permuted block randomisation was used to allocate treatment packs. Colony forming unit (CFU) assays were used to quantify eMSC in midluteal endometrial biopsies. The primary outcome measure was CFU counts. Secondary outcome measures were endometrial thickness, study acceptability, and first pregnancy outcome within 12 months following the study. Tissue samples were subjected to explorative investigations. Findings: CFU counts following sitagliptin were higher compared to placebo only when adjusted for baseline CFU counts and age (RR: 1.52, 95% CI: 1.32–1.75, P<0.01). The change in CFU count was 1.68 in the sitagliptin group and 1.08 in the placebo group. Trial recruitment, acceptability, and drug compliance were high. There were no serious adverse events. Explorative investigations showed that sitagliptin inhibits the expression of DIO2, a marker gene of senescent decidual cells. Interpretation: Sitagliptin increases eMSCs and decreases decidual senescence. A large-scale clinical trial evaluating the impact of preconception sitagliptin treatment on pregnancy outcome in RPL is feasible and warranted. Funding: Tommy's Baby Charity. Clinical trial registration: EU Clinical Trials Register no. 2016-001120-54

    Numerical Modeling of Mantle Flow Beneath Madagascar to Constrain Upper Mantle Rheology Beneath Continental Regions

    Get PDF
    Over the past few decades, azimuthal seismic anisotropy measurements have been widely used proxy to study past and present‐day deformation of the lithosphere and to characterize convection in the mantle. Beneath continental regions, distinguishing between shallow and deep sources of anisotropy remains difficult due to poor depth constraints of measurements and a lack of regional‐scale geodynamic modeling. Here, we constrain the sources of seismic anisotropy beneath Madagascar where a complex pattern cannot be explained by a single process such as absolute plate motion, global mantle flow, or geology. We test the hypotheses that either Edge‐Driven Convection (EDC) or mantle flow derived from mantle wind interactions with lithospheric topography is the dominant source of anisotropy beneath Madagascar. We, therefore, simulate two sets of mantle convection models using regional‐scale 3‐D computational modeling. We then calculate Lattice Preferred Orientation that develops along pathlines of the mantle flow models and use them to calculate synthetic splitting parameters. Comparison of predicted with observed seismic anisotropy shows a good fit in northern and southern Madagascar for the EDC model, but the mantle wind case only fits well in northern Madagascar. This result suggests the dominant control of the measured anisotropy may be from EDC, but the role of localized fossil anisotropy in narrow shear zones cannot be ruled out in southern Madagascar. Our results suggest that the asthenosphere beneath northern and southern Madagascar is dominated by dislocation creep. Dislocation creep rheology may be dominant in the upper asthenosphere beneath other regions of continental lithosphere

    Numerical Modeling of Mantle Flow Beneath Madagascar to Constrain Upper Mantle Rheology Beneath Continental Regions

    Get PDF
    Over the past few decades, azimuthal seismic anisotropy measurements have been widely used proxy to study past and present‐day deformation of the lithosphere and to characterize convection in the mantle. Beneath continental regions, distinguishing between shallow and deep sources of anisotropy remains difficult due to poor depth constraints of measurements and a lack of regional‐scale geodynamic modeling. Here, we constrain the sources of seismic anisotropy beneath Madagascar where a complex pattern cannot be explained by a single process such as absolute plate motion, global mantle flow, or geology. We test the hypotheses that either Edge‐Driven Convection (EDC) or mantle flow derived from mantle wind interactions with lithospheric topography is the dominant source of anisotropy beneath Madagascar. We, therefore, simulate two sets of mantle convection models using regional‐scale 3‐D computational modeling. We then calculate Lattice Preferred Orientation that develops along pathlines of the mantle flow models and use them to calculate synthetic splitting parameters. Comparison of predicted with observed seismic anisotropy shows a good fit in northern and southern Madagascar for the EDC model, but the mantle wind case only fits well in northern Madagascar. This result suggests the dominant control of the measured anisotropy may be from EDC, but the role of localized fossil anisotropy in narrow shear zones cannot be ruled out in southern Madagascar. Our results suggest that the asthenosphere beneath northern and southern Madagascar is dominated by dislocation creep. Dislocation creep rheology may be dominant in the upper asthenosphere beneath other regions of continental lithosphere

    The tight junction protein claudin-1 influences cranial neural crest cell emigration

    Get PDF
    The neural crest is a population of migratory cells that follows specific pathways during development, eventually differentiating to form parts of the face, heart, and peripheral nervous system, the latter of which includes contributions from placodal cells derived from the ectoderm. Stationary, premigratory neural crest cells acquire the capacity to migrate by undergoing an epithelial-to-mesenchymal transition that facilitates their emigration from the dorsal neural tube. This emigration involves, in part, the dismantling of cell-cell junctions, including apically localized tight junctions in the neuroepithelium. In this study, we have characterized the role of the transmembrane tight junction protein claudin-1 during neural crest and placode ontogeny. Our data indicate that claudin-1 is highly expressed in the developing neuroepithelium but is down-regulated in migratory neural crest cells, although expression persists in the ectoderm from which the placode cells arise. Depletion or overexpression of claudin-1 augments or reduces neural crest cell emigration, respectively, but does not impact the development of several cranial placodes. Taken together, our results reveal a novel function for a tight junction protein in the formation of migratory cranial neural crest cells in the developing vertebrate embryo
    corecore