5,194 research outputs found

    Functorial properties of Putnam's homology theory for Smale spaces

    Get PDF
    We investigate functorial properties of Putnam's homology theory for Smale spaces. Our analysis shows that the addition of a conjugacy condition is necessary to ensure functoriality. Several examples are discussed that elucidate the need for our additional hypotheses. Our second main result is a natural generalization of Putnam's Pullback Lemma from shifts of finite type to non-wandering Smale spaces.Comment: Updated to agree with published versio

    On a generalization of Jacobi's elliptic functions and the Double Sine-Gordon kink chain

    Full text link
    A generalization of Jacobi's elliptic functions is introduced as inversions of hyperelliptic integrals. We discuss the special properties of these functions, present addition theorems and give a list of indefinite integrals. As a physical application we show that periodic kink solutions (kink chains) of the double sine-Gordon model can be described in a canonical form in terms of generalized Jacobi functions.Comment: 18 pages, 9 figures, 3 table

    Some addition formulae for Abelian functions for elliptic and hyperelliptic curves of cyclotomic type

    Full text link
    We discuss a family of multi-term addition formulae for Weierstrass functions on specialized curves of genus one and two with many automorphisms. In the genus one case we find new addition formulae for the equianharmonic and lemniscate cases, and in genus two we find some new addition formulae for a number of curves, including the Burnside curve.Comment: 19 pages. We have extended the Introduction, corrected some typos and tidied up some proofs, and inserted extra material on genus 3 curve

    Characterizing Planetary Orbits and the Trajectories of Light

    Get PDF
    Exact analytic expressions for planetary orbits and light trajectories in the Schwarzschild geometry are presented. A new parameter space is used to characterize all possible planetary orbits. Different regions in this parameter space can be associated with different characteristics of the orbits. The boundaries for these regions are clearly defined. Observational data can be directly associated with points in the regions. A possible extension of these considerations with an additional parameter for the case of Kerr geometry is briefly discussed.Comment: 49 pages total with 11 tables and 10 figure

    The harmonic oscillator on Riemannian and Lorentzian configuration spaces of constant curvature

    Full text link
    The harmonic oscillator as a distinguished dynamical system can be defined not only on the Euclidean plane but also on the sphere and on the hyperbolic plane, and more generally on any configuration space with constant curvature and with a metric of any signature, either Riemannian (definite positive) or Lorentzian (indefinite). In this paper we study the main properties of these `curved' harmonic oscillators simultaneously on any such configuration space, using a Cayley-Klein (CK) type approach, with two free parameters \ki, \kii which altogether correspond to the possible values for curvature and signature type: the generic Riemannian and Lorentzian spaces of constant curvature (sphere S2{\bf S}^2, hyperbolic plane H2{\bf H}^2, AntiDeSitter sphere {\bf AdS}^{\unomasuno} and DeSitter sphere {\bf dS}^{\unomasuno}) appear in this family, with the Euclidean and Minkowski spaces as flat limits. We solve the equations of motion for the `curved' harmonic oscillator and obtain explicit expressions for the orbits by using three different methods: first by direct integration, second by obtaining the general CK version of the Binet's equation and third, as a consequence of its superintegrable character. The orbits are conics with centre at the potential origin in any CK space, thereby extending this well known Euclidean property to any constant curvature configuration space. The final part of the article, that has a more geometric character, presents those results of the theory of conics on spaces of constant curvature which are pertinent.Comment: 29 pages, 6 figure

    Nonlinear feedback oscillations in resonant tunneling through double barriers

    Full text link
    We analyze the dynamical evolution of the resonant tunneling of an ensemble of electrons through a double barrier in the presence of the self-consistent potential created by the charge accumulation in the well. The intrinsic nonlinearity of the transmission process is shown to lead to oscillations of the stored charge and of the transmitted and reflected fluxes. The dependence on the electrostatic feedback induced by the self-consistent potential and on the energy width of the incident distribution is discussed.Comment: 10 pages, TeX, 5 Postscript figure
    • …
    corecore