1,689 research outputs found
Two-species magneto-optical trap with 40K and 87Rb
We trap and cool a gas composed of 40K and 87Rb, using a two-species
magneto-optical trap (MOT). This trap represents the first step towards cooling
the Bose-Fermi mixture to quantum degeneracy. Laser light for the MOT is
derived from laser diodes and amplified with a single high power semiconductor
amplifier chip. The four-color laser system is described, and the
single-species and two-species MOTs are characterized. Atom numbers of 1x10^7
40K and 2x10^9 87Rb are trapped in the two-species MOT. Observation of trap
loss due to collisions between species is presented and future prospects for
the experiment are discussed.Comment: 4 pages, 4 figures; accepted for publication in Physical Review
Bose-Einstein Condensation in a Surface Micro Trap
Bose-Einstein condensation has been achieved in a magnetic surface micro trap
with 4x10^5 87Rb atoms. The strongly anisotropic trapping potential is
generated by a microstructure which consists of microfabricated linear copper
conductors at a width ranging from 3 to 30 micrometer. After loading a high
number of atoms from a pulsed thermal source directly into a magneto-optical
trap (MOT) the magnetically stored atoms are transferred into the micro trap by
adiabatic transformation of the trapping potential. The complete in vacuo trap
design is compatible with ultrahigh vacuum below 2x10^(-11) mbar.Comment: 4 pages, 4 figure
Dynamical decoherence in a cavity with a large number of two-level atoms
We consider a large number of two-level atoms interacting with the mode of a
cavity in the rotating-wave approximation (Tavis-Cummings model). We apply the
Holstein-Primakoff transformation to study the model in the limit of the number
of two-level atoms, all in their ground state, becoming very large. The unitary
evolution that we obtain in this approximation is applied to a macroscopic
superposition state showing that, when the coherent states forming the
superposition are enough distant, then the state collapses on a single coherent
state describing a classical radiation mode. This appear as a true dynamical
effect that could be observed in experiments with cavities.Comment: 9 pages, no figures. This submission substitutes paper
quant-ph/0212148 that was withdrawn. Version accepted for publication in
Journal of Physics B: Atomic, Molecular & Optical Physic
Static Properties of Trapped Bose-Fermi Mixed Condensate of Alkali Atoms
Static properties of a bose-fermi mixture of trapped potassium atoms are
studied in terms of coupled Gross-Pitaevskii and Thomas-Fermi equations for
both repulsive and attractive bose-fermi interatomic potentials. Qualitative
estimates are given for solutions of the coupled equations, and the parameter
regions are obtained analytically for the boson-density profile change and for
the boson/fermion phase separation. Especially, the parameter ratio
is found that discriminates the region of the large boson-profile change. These
estimates are applied for numerical results for the potassium atoms and checked
their consistency. It is suggested that a small fraction of fermions could be
trapped without an external potential for the system with an attractive
boson-fermion interaction.Comment: 8 pages,5 figure
Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register
We report preparation in the ground state of collective modes of motion of
two trapped 9Be+ ions. This is a crucial step towards realizing quantum logic
gates which can entangle the ions' internal electronic states. We find that
heating of the modes of relative ion motion is substantially suppressed
relative to that of the center-of-mass modes, suggesting the importance of
these modes in future experiments.Comment: 5 pages, including 3 figures. RevTeX. PDF and PostScript available at
http://www.bldrdoc.gov/timefreq/ion/qucomp/papers.htm . final (published)
version. Eq. 1 and Table 1 slightly different from original submissio
Universality of Decoherence
We consider environment induced decoherence of quantum superpositions to
mixtures in the limit in which that process is much faster than any competing
one generated by the Hamiltonian of the isolated system. While
the golden rule then does not apply we can discard . By allowing
for simultaneous couplings to different reservoirs, we reveal decoherence as a
universal short-time phenomenon independent of the character of the system as
well as the bath and of the basis the superimposed states are taken from. We
discuss consequences for the classical behavior of the macroworld and quantum
measurement: For the decoherence of superpositions of macroscopically distinct
states the system Hamiltonian is always negligible.Comment: 4 revtex pages, no figure
Observation of p-wave Threshold Law Using Evaporatively Cooled Fermionic Atoms
We have measured independently both s-wave and p-wave cross-dimensional
thermalization rates for ultracold potassium-40 atoms held in a magnetic trap.
These measurements reveal that this fermionic isotope has a large positive
s-wave triplet scattering length in addition to a low temperature p-wave shape
resonance. We have observed directly the p-wave threshold law which, combined
with the Fermi statistics, dramatically suppresses elastic collision rates at
low temperatures. In addition, we present initial evaporative cooling results
that make possible these collision measurements and are a precursor to
achieving quantum degeneracy in this neutral, low-density Fermi system.Comment: 5 pages, 3 figures, 1 tabl
Dynamics of two colliding Bose-Einstein condensates in an elongated magneto-static trap
We study the dynamics of two interacting Bose-Einstein condensates, by
numerically solving two coupled Gross-Pitaevskii equations at zero temperature.
We consider the case of a sudden transfer of atoms between two trapped states
with different magnetic moments: the two condensates are initially created with
the same density profile, but are trapped into different magnetic potentials,
whose minima are vertically displaced by a distance much larger than the
initial size of both condensates. Then the two condensates begin to perform
collective oscillations, undergoing a complex evolution, characterized by
collisions between the two condensates. We investigate the effects of their
mutual interaction on the center-of-mass oscillations and on the time evolution
of the aspect ratios. Our theoretical analysis provides a useful insight into
the recent experimental observations by Maddaloni et al., cond-mat/0003402.Comment: 8 pages, 7 figures, RevTe
SUMOylation inhibits FOXM1 activity and delays mitotic transition
The forkhead box transcription factor FOXM1 is an essential effector of G2/M-phase transition, mitosis and the DNA damage response. As such, it is frequently deregulated during tumorigenesis. Here we report that FOXM1 is dynamically modified by SUMO1 but not by SUMO2/3 at multiple sites. We show that FOXM1 SUMOylation is enhanced in MCF-7 breast cancer cells in response to treatment with epirubicin and mitotic inhibitors. Mutation of five consensus conjugation motifs yielded a SUMOylation-deficient mutant FOXM1. Conversely, fusion of the E2 ligase Ubc9 to FOXM1 generated an auto-SUMOylating mutant (FOXM1-Ubc9). Analysis of wild-type FOXM1 and mutants revealed that SUMOylation inhibits FOXM1 activity, promotes translocation to the cytoplasm and enhances APC/Cdh1-mediated ubiquitination and degradation. Further, expression of the SUMOylation-deficient mutant enhanced cell proliferation compared with wild-type FOXM1, whereas the FOXM1-Ubc9 fusion protein resulted in persistent cyclin B1 expression and slowed the time from mitotic entry to exit. In summary, our findings suggest that SUMOylation attenuates FOXM1 activity and causes mitotic delay in cytotoxic drug response
Thirty Years of Precision Electroweak Physics
We discuss the development of the theory of electroweak radiative corrections
and its role in testing the Standard Model, predicting the top quark mass,
constraining the Higgs boson mass, and searching for deviations that may signal
the presence of new physics.Comment: 19 pages, acknowledgments added, J.J.Sakurai Prize Talk, APS Meeting,
Albuquerque, N.M., April 2002. To appear in a future issue of Journal of
Physics
- ā¦