1,689 research outputs found

    Two-species magneto-optical trap with 40K and 87Rb

    Full text link
    We trap and cool a gas composed of 40K and 87Rb, using a two-species magneto-optical trap (MOT). This trap represents the first step towards cooling the Bose-Fermi mixture to quantum degeneracy. Laser light for the MOT is derived from laser diodes and amplified with a single high power semiconductor amplifier chip. The four-color laser system is described, and the single-species and two-species MOTs are characterized. Atom numbers of 1x10^7 40K and 2x10^9 87Rb are trapped in the two-species MOT. Observation of trap loss due to collisions between species is presented and future prospects for the experiment are discussed.Comment: 4 pages, 4 figures; accepted for publication in Physical Review

    Bose-Einstein Condensation in a Surface Micro Trap

    Full text link
    Bose-Einstein condensation has been achieved in a magnetic surface micro trap with 4x10^5 87Rb atoms. The strongly anisotropic trapping potential is generated by a microstructure which consists of microfabricated linear copper conductors at a width ranging from 3 to 30 micrometer. After loading a high number of atoms from a pulsed thermal source directly into a magneto-optical trap (MOT) the magnetically stored atoms are transferred into the micro trap by adiabatic transformation of the trapping potential. The complete in vacuo trap design is compatible with ultrahigh vacuum below 2x10^(-11) mbar.Comment: 4 pages, 4 figure

    Dynamical decoherence in a cavity with a large number of two-level atoms

    Full text link
    We consider a large number of two-level atoms interacting with the mode of a cavity in the rotating-wave approximation (Tavis-Cummings model). We apply the Holstein-Primakoff transformation to study the model in the limit of the number of two-level atoms, all in their ground state, becoming very large. The unitary evolution that we obtain in this approximation is applied to a macroscopic superposition state showing that, when the coherent states forming the superposition are enough distant, then the state collapses on a single coherent state describing a classical radiation mode. This appear as a true dynamical effect that could be observed in experiments with cavities.Comment: 9 pages, no figures. This submission substitutes paper quant-ph/0212148 that was withdrawn. Version accepted for publication in Journal of Physics B: Atomic, Molecular & Optical Physic

    Static Properties of Trapped Bose-Fermi Mixed Condensate of Alkali Atoms

    Full text link
    Static properties of a bose-fermi mixture of trapped potassium atoms are studied in terms of coupled Gross-Pitaevskii and Thomas-Fermi equations for both repulsive and attractive bose-fermi interatomic potentials. Qualitative estimates are given for solutions of the coupled equations, and the parameter regions are obtained analytically for the boson-density profile change and for the boson/fermion phase separation. Especially, the parameter ratio RintR_{int} is found that discriminates the region of the large boson-profile change. These estimates are applied for numerical results for the potassium atoms and checked their consistency. It is suggested that a small fraction of fermions could be trapped without an external potential for the system with an attractive boson-fermion interaction.Comment: 8 pages,5 figure

    Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register

    Full text link
    We report preparation in the ground state of collective modes of motion of two trapped 9Be+ ions. This is a crucial step towards realizing quantum logic gates which can entangle the ions' internal electronic states. We find that heating of the modes of relative ion motion is substantially suppressed relative to that of the center-of-mass modes, suggesting the importance of these modes in future experiments.Comment: 5 pages, including 3 figures. RevTeX. PDF and PostScript available at http://www.bldrdoc.gov/timefreq/ion/qucomp/papers.htm . final (published) version. Eq. 1 and Table 1 slightly different from original submissio

    Universality of Decoherence

    Full text link
    We consider environment induced decoherence of quantum superpositions to mixtures in the limit in which that process is much faster than any competing one generated by the Hamiltonian HsysH_{\rm sys} of the isolated system. While the golden rule then does not apply we can discard HsysH_{\rm sys}. By allowing for simultaneous couplings to different reservoirs, we reveal decoherence as a universal short-time phenomenon independent of the character of the system as well as the bath and of the basis the superimposed states are taken from. We discuss consequences for the classical behavior of the macroworld and quantum measurement: For the decoherence of superpositions of macroscopically distinct states the system Hamiltonian is always negligible.Comment: 4 revtex pages, no figure

    Observation of p-wave Threshold Law Using Evaporatively Cooled Fermionic Atoms

    Full text link
    We have measured independently both s-wave and p-wave cross-dimensional thermalization rates for ultracold potassium-40 atoms held in a magnetic trap. These measurements reveal that this fermionic isotope has a large positive s-wave triplet scattering length in addition to a low temperature p-wave shape resonance. We have observed directly the p-wave threshold law which, combined with the Fermi statistics, dramatically suppresses elastic collision rates at low temperatures. In addition, we present initial evaporative cooling results that make possible these collision measurements and are a precursor to achieving quantum degeneracy in this neutral, low-density Fermi system.Comment: 5 pages, 3 figures, 1 tabl

    Dynamics of two colliding Bose-Einstein condensates in an elongated magneto-static trap

    Full text link
    We study the dynamics of two interacting Bose-Einstein condensates, by numerically solving two coupled Gross-Pitaevskii equations at zero temperature. We consider the case of a sudden transfer of atoms between two trapped states with different magnetic moments: the two condensates are initially created with the same density profile, but are trapped into different magnetic potentials, whose minima are vertically displaced by a distance much larger than the initial size of both condensates. Then the two condensates begin to perform collective oscillations, undergoing a complex evolution, characterized by collisions between the two condensates. We investigate the effects of their mutual interaction on the center-of-mass oscillations and on the time evolution of the aspect ratios. Our theoretical analysis provides a useful insight into the recent experimental observations by Maddaloni et al., cond-mat/0003402.Comment: 8 pages, 7 figures, RevTe

    SUMOylation inhibits FOXM1 activity and delays mitotic transition

    Get PDF
    The forkhead box transcription factor FOXM1 is an essential effector of G2/M-phase transition, mitosis and the DNA damage response. As such, it is frequently deregulated during tumorigenesis. Here we report that FOXM1 is dynamically modified by SUMO1 but not by SUMO2/3 at multiple sites. We show that FOXM1 SUMOylation is enhanced in MCF-7 breast cancer cells in response to treatment with epirubicin and mitotic inhibitors. Mutation of five consensus conjugation motifs yielded a SUMOylation-deficient mutant FOXM1. Conversely, fusion of the E2 ligase Ubc9 to FOXM1 generated an auto-SUMOylating mutant (FOXM1-Ubc9). Analysis of wild-type FOXM1 and mutants revealed that SUMOylation inhibits FOXM1 activity, promotes translocation to the cytoplasm and enhances APC/Cdh1-mediated ubiquitination and degradation. Further, expression of the SUMOylation-deficient mutant enhanced cell proliferation compared with wild-type FOXM1, whereas the FOXM1-Ubc9 fusion protein resulted in persistent cyclin B1 expression and slowed the time from mitotic entry to exit. In summary, our findings suggest that SUMOylation attenuates FOXM1 activity and causes mitotic delay in cytotoxic drug response

    Thirty Years of Precision Electroweak Physics

    Get PDF
    We discuss the development of the theory of electroweak radiative corrections and its role in testing the Standard Model, predicting the top quark mass, constraining the Higgs boson mass, and searching for deviations that may signal the presence of new physics.Comment: 19 pages, acknowledgments added, J.J.Sakurai Prize Talk, APS Meeting, Albuquerque, N.M., April 2002. To appear in a future issue of Journal of Physics
    • ā€¦
    corecore