5,534 research outputs found

    Improved Bidirectional GAN-Based Approach for Network Intrusion Detection Using One-Class Classifier

    Get PDF
    Existing generative adversarial networks (GANs), primarily used for creating fake image samples from natural images, demand a strong dependence (i.e., the training strategy of the generators and the discriminators require to be in sync) for the generators to produce as realistic fake samples that can “fool” the discriminators. We argue that this strong dependency required for GAN training on images does not necessarily work for GAN models for network intrusion detection tasks. This is because the network intrusion inputs have a simpler feature structure such as relatively low-dimension, discrete feature values, and smaller input size compared to the existing GAN-based anomaly detection tasks proposed on images. To address this issue, we propose a new Bidirectional GAN (Bi-GAN) model that is better equipped for network intrusion detection with reduced overheads involved in excessive training. In our proposed method, the training iteration of the generator (and accordingly the encoder) is increased separate from the training of the discriminator until it satisfies the condition associated with the cross-entropy loss. Our empirical results show that this proposed training strategy greatly improves the performance of both the generator and the discriminator even in the presence of imbalanced classes. In addition, our model offers a new construct of a one-class classifier using the trained encoder–discriminator. The one-class classifier detects anomalous network traffic based on binary classification results instead of calculating expensive and complex anomaly scores (or thresholds). Our experimental result illustrates that our proposed method is highly effective to be used in network intrusion detection tasks and outperforms other similar generative methods on two datasets: NSL-KDD and CIC-DDoS2019 datasets.Publishe

    hVH-5: A Protein Tyrosine Phosphatase Abundant in Brain that Inactivates Mitogen-Activated Protein Kinase

    Full text link
    A novel protein tyrosine phosphatase [ h omologue of v accinia virus H 1 phosphatase gene clone 5 (hVH-5)] was cloned; it shared sequence similarity with a subset of protein tyrosine phosphatases that regulate mitogen-activated protein kinase. The catalytic region of hVH-5 was expressed as a fusion protein and was shown to hydrolyze p -nitrophenylphosphate and inactivate mitogen-activated protein kinase, thus proving that hVH-5 possessed phosphatase activity. A unique proline-rich region distinguished hVH-5 from other closely related protein tyrosine phosphatases. Another feature that distinguished hVH-5 from related phosphatases was that hVH-5 was expressed predominantly in the adult brain, heart, and skeletal muscle. In addition, in situ hybridization histochemistry of mouse embryo revealed high levels of expression and a wide distribution in the central and peripheral nervous system. Some specific areas of abundant hVH-5 expression included the olfactory bulb, retina, layers of the cerebral cortex, and cranial and spinal ganglia. hVH-5 was induced in PC12 cells upon nerve growth factor and insulin treatment in a manner characteristic of an immediate-early gene, suggesting a possible role in the signal transduction cascade.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65883/1/j.1471-4159.1995.65041823.x.pd

    Monte Carlo Simulation of Sinusoidally Modulated Superlattice Growth

    Full text link
    The fabrication of ZnSe/ZnTe superlattices grown by the process of rotating the substrate in the presence of an inhomogeneous flux distribution instead of successively closing and opening of source shutters is studied via Monte Carlo simulations. It is found that the concentration of each compound is sinusoidally modulated along the growth direction, caused by the uneven arrival of Se and Te atoms at a given point of the sample, and by the variation of the Te/Se ratio at that point due to the rotation of the substrate. In this way we obtain a ZnSe1x_{1-x}Tex_x alloy in which the composition xx varies sinusoidally along the growth direction. The period of the modulation is directly controlled by the rate of the substrate rotation. The amplitude of the compositional modulation is monotonous for small angular velocities of the substrate rotation, but is itself modulated for large angular velocities. The average amplitude of the modulation pattern decreases as the angular velocity of substrate rotation increases and the measurement position approaches the center of rotation. The simulation results are in good agreement with previously published experimental measurements on superlattices fabricated in this manner

    Unusual low-temperature thermopower in the one-dimensional Hubbard model

    Full text link
    The low-temperature thermoelectric power of the repulsive-interaction one-dimensional Hubbard model is calculated using an asymptotic Bethe ansatz for holons and spinons. The competition between the entropy carried by the holons and that carried by the backflow of the spinons gives rise to an unusual temperature and doping dependence of the thermopower which is qualitatively similar to that observed in the normal state of high-TcT_{c} superconductors.Comment: 11 pages, REVTEX 3.

    Differential regulation of BACE1 expression by oxidative and nitrosative signals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well established that both cerebral hypoperfusion/stroke and type 2 diabetes are risk factors for Alzheimer's disease (AD). Recently, the molecular link between ischemia/hypoxia and amyloid precursor protein (APP) processing has begun to be established. However, the role of the key common denominator, namely nitric oxide (NO), in AD is largely unknown. In this study, we investigated redox regulation of BACE1, the rate-limiting enzyme responsible for the β-cleavage of APP to Aβ peptides.</p> <p>Results</p> <p>Herein, we studied events such as S-nitrosylation, a covalent modification of cysteine residues by NO, and H<sub>2</sub>O<sub>2</sub>-mediated oxidation. We found that NO and H<sub>2</sub>O<sub>2 </sub>differentially modulate BACE1 expression and enzymatic activity: NO at low concentrations (<100 nM) suppresses BACE1 transcription as well as its enzymatic activity while at higher levels (0.1-100 μM) NO induces S-nitrosylation of BACE1 which inactivates the enzyme without altering its expression. Moreover, the suppressive effect on BACE1 transcription is mediated by the NO/cGMP-PKG signaling, likely through activated PGC-1α. H<sub>2</sub>O<sub>2 </sub>(1-10 μM) induces BACE1 expression via transcriptional activation, resulting in increased enzymatic activity. The differential effects of NO and H<sub>2</sub>O<sub>2 </sub>on BACE1 expression and activity are also reflected in their opposing effects on Aβ generation in cultured neurons in a dose-dependent manner. Furthermore, we found that BACE1 is highly S-nitrosylated in normal aging brains while S-nitrosylation is markedly reduced in AD brains.</p> <p>Conclusion</p> <p>This study demonstrates for the first time that BACE1 is highly modified by NO via multiple mechanisms: low and high levels of NO suppress BACE1 via transcriptional and post translational regulation, in contrast with the upregulation of BACE1 by H<sub>2</sub>O<sub>2</sub>-mediated oxidation. These novel NO-mediated regulatory mechanisms likely protect BACE1 from being further oxidized by excessive oxidative stress, as from H<sub>2</sub>O<sub>2 </sub>and peroxynitrite which are known to upregulate BACE1 and activate the enzyme, resulting in excessive cleavage of APP and Aβ generation; they likely represent the crucial house-keeping mechanism for BACE1 expression/activation under physiological conditions.</p

    The Early Bird Catches The Term: Combining Twitter and News Data For Event Detection and Situational Awareness

    Full text link
    Twitter updates now represent an enormous stream of information originating from a wide variety of formal and informal sources, much of which is relevant to real-world events. In this paper we adapt existing bio-surveillance algorithms to detect localised spikes in Twitter activity corresponding to real events with a high level of confidence. We then develop a methodology to automatically summarise these events, both by providing the tweets which fully describe the event and by linking to highly relevant news articles. We apply our methods to outbreaks of illness and events strongly affecting sentiment. In both case studies we are able to detect events verifiable by third party sources and produce high quality summaries

    10 simple rules to create a serious game, illustrated with examples from structural biology

    Full text link
    Serious scientific games are games whose purpose is not only fun. In the field of science, the serious goals include crucial activities for scientists: outreach, teaching and research. The number of serious games is increasing rapidly, in particular citizen science games, games that allow people to produce and/or analyze scientific data. Interestingly, it is possible to build a set of rules providing a guideline to create or improve serious games. We present arguments gathered from our own experience ( Phylo , DocMolecules , HiRE-RNA contest and Pangu) as well as examples from the growing literature on scientific serious games

    Two-Dimensional Electronic Spectroscopy of Chlorophyll a: Solvent Dependent Spectral Evolution

    Get PDF
    The interaction of the monomeric chlorophyll Q-band electronic transition with solvents of differing physical-chemical properties is investigated through two-dimensional electronic spectroscopy (2DES). Chlorophyll constitutes the key chromophore molecule in light harvesting complexes. It is well-known that the surrounding protein in the light harvesting complex fine-tunes chlorophyll electronic transitions to optimize energy transfer. Therefore, an understanding of the influence of the environment on the monomeric chlorophyll electronic transitions is important. The Q-band 2DES is inhomogeneous at early times, particularly in hydrogen bonding polar solvents, but also in nonpolar solvents like cyclohexane. Interestingly this inhomogeneity persists for long times, even up to the nanosecond time scale in some solvents. The reshaping of the 2DES occurs over multiple time scales and was assigned mainly to spectral diffusion. At early times the reshaping is Gaussian-like, hinting at a strong solvent reorganization effect. The temporal evolution of the 2DES response was analyzed in terms of a Brownian oscillator model. The spectral densities underpinning the Brownian oscillator fitting were recovered for the different solvents. The absorption spectra and Stokes shift were also properly described by this model. The extent and nature of inhomogeneous broadening was a strong function of solvent, being larger in H-bonding and viscous media and smaller in nonpolar solvents. The fastest spectral reshaping components were assigned to solvent dynamics, modified by interactions with the solute
    corecore