4,112 research outputs found

    Indirect observation of phase conjugate magnons from non-degenerate four-wave mixing

    Get PDF
    A phase conjugate mirror utilising four-wave mixing in a magnetic system is experimentally realised for the first time. Indirect evidence of continuous-wave phase conjugation has been observed experimentally and is supported by simulations. The experiment utilizes a pump-probe method to excite a four-wave mixing process. Two antennae are used to pump a region of a thin-film yttrium iron garnet waveguide with magnons of frequency f1f_{1} to create a spatio-temporally periodic potential. As the probe magnons of fpf_{\mathrm{p}} impinge on the pumped region, a signal with frequency fc=2f1−fpf_{\mathrm{c}} = 2f_{1}-f_{\mathrm{p}} is observed. The amplitude of the nonlinear signal was highly dependent on the applied magnetic field HH. Width modes of the probe magnons and standing wave modes of the pump magnons were shown to affect the amplitude of the signal at fcf_{\mathrm{c}}. Experimental data is compared with simulations and theory to suggest that fcf_{\mathrm{c}} is a phase conjugate of fpf_{\mathrm{p}}.Comment: 6 pages, 6 figure

    Helium condensation in aerogel: avalanches and disorder-induced phase transition

    Full text link
    We present a detailed numerical study of the elementary condensation events (avalanches) associated to the adsorption of 4^4He in silica aerogels. We use a coarse-grained lattice-gas description and determine the nonequilibrium behavior of the adsorbed gas within a local mean-field analysis, neglecting thermal fluctuations and activated processes. We investigate the statistical properties of the avalanches, such as their number, size and shape along the adsorption isotherms as a function of gel porosity, temperature, and chemical potential. Our calculations predict the existence of a line of critical points in the temperature-porosity diagram where the avalanche size distribution displays a power-law behavior and the adsorption isotherms have a universal scaling form. The estimated critical exponents seem compatible with those of the field-driven Random Field Ising Model at zero temperature.Comment: 16 pages, 14 figure

    Magnonic crystal based forced dominant wavenumber selection in a spin-wave active ring

    Full text link
    Spontaneous excitation of the dominant mode in a spin-wave active ring -- a self-exciting positive-feedback system incorporating a spin-wave transmission structure -- occurs at a certain threshold value of external gain. In general, the wavenumber of the dominant mode is extremely sensitive to the properties and environment of the spin-wave transmission medium, and is almost impossible to predict. In this letter, we report on a backward volume magnetostatic spin-wave active ring system incorporating a magnonic crystal. When mode enhancement conditions -- readily predicted by a theoretical model -- are satisfied, the ring geometry permits highly robust and consistent forced dominant wavenumber selection.Comment: 4 pages, 3 figure

    Strain Gradients in Epitaxial Ferroelectrics

    Get PDF
    X-ray analysis of ferroelectric thin layers of Ba1/2Sr1/2TiO3 with different thickness reveals the presence of internal strain gradients across the film thickness and allows us to propose a functional form for the internal strain profile. We use this to calculate the direct influence of strain gradient, through flexoelectric coupling, on the degradation of the ferroelectric properties of thin films with decreasing thickness, in excellent agreement with the observed behaviour. This work highlights the link between strain relaxation and strain gradients in epitaxial films, and shows the pressing need to avoid strain gradients in order to obtain thin ferroelectrics with bulk-like properties.Comment: 4 pages, 3 embedded figures (1 color), revTex

    Gas adsorption/desorption in silica aerogels: a theoretical study of scattering properties

    Full text link
    We present a numerical study of the structural correlations associated to gas adsorption/desorption in silica aerogels in order to provide a theoretical interpretation of scattering experiments. Following our earlier work, we use a coarse-grained lattice-gas description and determine the nonequilibrium behavior of the adsorbed gas within a local mean-field analysis. We focus on the differences between the adsorption and desorption mechanisms and their signature in the fluid-fluid and gel-fluid structure factors as a function of temperature. At low temperature, but still in the regime where the isotherms are continuous, we find that the adsorbed fluid density, during both filling and draining, is correlated over distances that may be much larger than the gel correlation length. In particular, extended fractal correlations may occur during desorption, indicating the existence of a ramified cluster of vapor filled cavities. This also induces an important increase of the scattering intensity at small wave vectors. The similarity and differences with the scattering of fluids in other porous solids such as Vycor are discussed.Comment: 16 pages, 15 figure

    Negative Domain Wall Contribution to the Resistivity of Microfabricated Fe Wires

    Full text link
    The effect of domain walls on electron transport has been investigated in microfabricated Fe wires (0.65 to 20 μm\mu m linewidths) with controlled stripe domains. Magnetoresistance (MR) measurements as a function of domain wall density, temperature and the angle of the applied field are used to determine the low field MR contributions due to conventional sources in ferromagnetic materials and that due to the erasure of domain walls. A negative domain wall contribution to the resistivity is found. This result is discussed in light of a recent theoretical study of the effect of domain walls on quantum transport.Comment: 7 pages, 4 postscript figures and 1 jpg image (Fig. 1
    • …
    corecore