1,085 research outputs found

    Valence Bond Entanglement Entropy

    Full text link
    We introduce for SU(2) quantum spin systems the Valence Bond Entanglement Entropy as a counting of valence bond spin singlets shared by two subsystems. For a large class of antiferromagnetic systems, it can be calculated in all dimensions with Quantum Monte Carlo simulations in the valence bond basis. We show numerically that this quantity displays all features of the von Neumann entanglement entropy for several one-dimensional systems. For two-dimensional Heisenberg models, we find a strict area law for a Valence Bond Solid state and multiplicative logarithmic corrections for the Neel phase.Comment: 4 pages, 3 figures, v2: small corrections, published versio

    Global Phase Diagram of the High Tc Cuprates

    Full text link
    The high Tc cuprates have a complex phase diagram with many competing phases. We propose a bosonic effective quantum Hamiltonian based on the projected SO(5) model with extended interactions, which can be derived from the microscopic models of the cuprates. The global phase diagram of this model is obtained using mean-field theory and the Quantum Monte Carlo simulation, which is possible because of the absence of the minus sign problem. We show that this single quantum model can account for most salient features observed in the high Tc cuprates, with different families of the cuprates attributed to different traces in the global phase diagram. Experimental consequences are discussed and new theoretical predictions are presented.Comment: 19 pages, 20 figures, with updated references, final versio

    Implementation of screened hybrid functionals based on the Yukawa potential within the LAPW basis set

    Full text link
    The implementation of screened hybrid functionals into the WIEN2k code, which is based on the LAPW basis set, is reported. The Hartree-Fock exchange energy and potential are screened by means of the Yukawa potential as proposed by Bylander and Kleinman [Phys. Rev. B 41, 7868 (1990)] for the calculation of the electronic structure of solids with the screened-exchange local density approximation. Details of the formalism, which is based on the method of Massidda, Posternak, and Baldereschi [Phys. Rev. B 48, 5058 (1993)] for the unscreened Hartree-Fock exchange are given. The results for the transition-energy and structural properties of several test cases are presented. Results of calculations of the Cu electric-field gradient in Cu2O are also presented, and it is shown that the hybrid functionals are much more accurate than the standard local-density or generalized gradient approximations

    Magnetized Accretion-Ejection Structures: 2.5D MHD simulations of continuous Ideal Jet launching from resistive accretion disks

    Full text link
    We present numerical magnetohydrodynamic (MHD) simulations of a magnetized accretion disk launching trans-Alfvenic jets. These simulations, performed in a 2.5 dimensional time-dependent polytropic resistive MHD framework, model a resistive accretion disk threaded by an initial vertical magnetic field. The resistivity is only important inside the disk, and is prescribed as eta = alpha_m V_AH exp(-2Z^2/H^2), where V_A stands for Alfven speed, H is the disk scale height and the coefficient alpha_m is smaller than unity. By performing the simulations over several tens of dynamical disk timescales, we show that the launching of a collimated outflow occurs self-consistently and the ejection of matter is continuous and quasi-stationary. These are the first ever simulations of resistive accretion disks launching non-transient ideal MHD jets. Roughly 15% of accreted mass is persistently ejected. This outflow is safely characterized as a jet since the flow becomes super-fastmagnetosonic, well-collimated and reaches a quasi-stationary state. We present a complete illustration and explanation of the `accretion-ejection' mechanism that leads to jet formation from a magnetized accretion disk. In particular, the magnetic torque inside the disk brakes the matter azimuthally and allows for accretion, while it is responsible for an effective magneto-centrifugal acceleration in the jet. As such, the magnetic field channels the disk angular momentum and powers the jet acceleration and collimation. The jet originates from the inner disk region where equipartition between thermal and magnetic forces is achieved. A hollow, super-fastmagnetosonic shell of dense material is the natural outcome of the inwards advection of a primordial field.Comment: ApJ (in press), 32 pages, Higher quality version available at http://www-laog.obs.ujf-grenoble.fr/~fcass

    Dielectric relaxations and ferroelectric behaviour of even–odd polyamide PA 6,9

    Get PDF
    Thermo Stimulated Current (TSC) combined with Dynamic Dielectric Spectroscopy (DDS) have been applied to the investigation of dielectric relaxation modes of an even–odd Polyamide PA 6,9. The correlation between results obtained by both methods allows us to describe precisely the molecular mobility. At high temperature, the various dielectric relaxation phenomena are separated by applying the dielectric modulus formalism. The comparison between the activation enthalpy values obtained by DDS and TSC leads to the assignment of the so-called α mode to cooperative movements of polymeric sequences. Molecular mobility of PA 6,9 is compared with the one of PA 11. The piezoelectric activity of PA 6,9 is shown and analyzed

    Two-flow magnetohydrodynamical jets around young stellar objects

    Full text link
    We present the first-ever simulations of non-ideal magnetohydrodynamical (MHD) stellar winds coupled with disc-driven jets where the resistive and viscous accretion disc is self-consistently described. The transmagnetosonic, collimated MHD outflows are investigated numerically using the VAC code. Our simulations show that the inner outflow is accelerated from the central object hot corona thanks to both the thermal pressure and the Lorentz force. In our framework, the thermal acceleration is sustained by the heating produced by the dissipated magnetic energy due to the turbulence. Conversely, the outflow launched from the resistive accretion disc is mainly accelerated by the magneto-centrifugal force. We also show that when a dense inner stellar wind occurs, the resulting disc-driven jet have a different structure, namely a magnetic structure where poloidal magnetic field lines are more inclined because of the pressure caused by the stellar wind. This modification leads to both an enhanced mass ejection rate in the disc-driven jet and a larger radial extension which is in better agreement with the observations besides being more consistent.Comment: Accepted for publication in Astrophysics & Space Science. Referred proceeding of the fifth Mont Stromlo Symposium Dec. 1-8 2006, Canberra, Australia. 5 pages, 3 figures. For high resolution version of the paper, please click here http://www.apc.univ-paris7.fr/~fcasse/publications.htm

    Transport of Cosmic Rays in Chaotic Magnetic Fields

    Get PDF
    The transport of charged particles in disorganised magnetic fields is an important issue which concerns the propagation of cosmic rays of all energies in a variety of astrophysical environments, such as the interplanetary, interstellar and even extra-galactic media, as well as the efficiency of Fermi acceleration processes. We have performed detailed numerical experiments using Monte-Carlo simulations of particle propagation in stochastic magnetic fields in order to measure the parallel and transverse spatial diffusion coefficients and the pitch angle scattering time as a function of rigidity and strength of the turbulent magnetic component. We confirm the extrapolation to high turbulence levels of the scaling predicted by the quasi-linear approximation for the scattering frequency and parallel diffusion coefficient at low rigidity. We show that the widely used Bohm diffusion coefficient does not provide a satisfactory approximation to diffusion even in the extreme case where the mean field vanishes. We find that diffusion also takes place for particles with Larmor radii larger than the coherence length of the turbulence. We argue that transverse diffusion is much more effective than predicted by the quasi-linear approximation, and appears compatible with chaotic magnetic diffusion of the field lines. We provide numerical estimates of the Kolmogorov length and magnetic line diffusion coefficient as a function of the level of turbulence. Finally we comment on applications of our results to astrophysical turbulence and the acceleration of high energy cosmic rays in supernovae remnants, in super-bubbles, and in jets and hot spots of powerful radio-galaxies.Comment: To be published in Physical Review D, 20 pages 9 figure

    Daily Eastern News: March 03, 2017

    Get PDF
    https://thekeep.eiu.edu/den_2017_mar/1002/thumbnail.jp

    The Water Vapor Abundance in Orion KL Outflows

    Get PDF
    We present the detection and modeling of more than 70 far-IR pure rotational lines of water vapor, including the 18O and 17O isotopologues, towards Orion KL. Observations were performed with the Long Wavelength Spectrometer Fabry-Perot (LWS/FP; R~6800-9700) on board the Infrared Space Observatory (ISO) between ~43 and ~197 um. The water line profiles evolve from P-Cygni type profiles (even for the H2O18 lines) to pure emission at wavelengths above ~100 um. We find that most of the water emission/absorption arises from an extended flow of gas expanding at 25+-5 kms^-1. Non-local radiative transfer models show that much of the water excitation and line profile formation is driven by the dust continuum emission. The derived beam averaged water abundance is 2-3x10^-5. The inferred gas temperature Tk=80-100 K suggests that: (i) water could have been formed in the "plateau" by gas phase neutral-neutral reactions with activation barriers if the gas was previously heated (e.g. by shocks) to >500 K and/or (ii) H2O formation in the outflow is dominated by in-situ evaporation of grain water-ice mantles and/or (iii) H2O was formed in the innermost and warmer regions (e.g. the hot core) and was swept up in ~1000 yr, the dynamical timescale of the outflow.Comment: Accepted for publication in ApJ letters [2006 August 7] (5 pages 2, figures, not edited
    • 

    corecore