970 research outputs found
Asymptotics of self-similar solutions to coagulation equations with product kernel
We consider mass-conserving self-similar solutions for Smoluchowski's
coagulation equation with kernel with
. It is known that such self-similar solutions
satisfy that is bounded above and below as . In
this paper we describe in detail via formal asymptotics the qualitative
behavior of a suitably rescaled function in the limit . It turns out that as . As becomes larger
develops peaks of height that are separated by large regions
where is small. Finally, converges to zero exponentially fast as . Our analysis is based on different approximations of a nonlocal
operator, that reduces the original equation in certain regimes to a system of
ODE
Self-Similarity for Ballistic Aggregation Equation
We consider ballistic aggregation equation for gases in which each particle
is iden- ti?ed either by its mass and impulsion or by its sole impulsion. For
the constant aggregation rate we prove existence of self-similar solutions as
well as convergence to the self-similarity for generic solutions. For some
classes of mass and/or impulsion dependent rates we are also able to estimate
the large time decay of some moments of generic solutions or to build some new
classes of self-similar solutions
Efectos de la frecuencia de incendios sobre las cargas de combustible en los bosques de pino-encino de la provincia de Madrean
Loadings of downed woody fuels in pine-oak forests of the Madrean Province are heavier on sites in southeastern Arizona with low fire frequencies and lower on sites in northeastern Sonora, Mexico, with high fire frequencies. Low fire frequencies in southeastern Arizona are attributed largely to past land uses and the fire suppression policies of land management agencies in the United States. Ecologists and land managers interested in reintroducing fire into these forests to reduce fuel loadings and meet other land management objectives could use information about fuel buildups in their planning efforts. Quantifying these fuel loadings could also be useful in improving fire behavior models for the forests
Self-similar chain conformations in polymer gels
We use molecular dynamics simulations to study the swelling of randomly
end-cross-linked polymer networks in good solvent conditions. We find that the
equilibrium degree of swelling saturates at Q_eq = N_e**(3/5) for mean strand
lengths N_s exceeding the melt entanglement length N_e. The internal structure
of the network strands in the swollen state is characterized by a new exponent
nu=0.72. Our findings are in contradiction to de Gennes' c*-theorem, which
predicts Q_eq proportional N_s**(4/5) and nu=0.588. We present a simple Flory
argument for a self-similar structure of mutually interpenetrating network
strands, which yields nu=7/10 and otherwise recovers the classical Flory-Rehner
theory. In particular, Q_eq = N_e**(3/5), if N_e is used as effective strand
length.Comment: 4 pages, RevTex, 3 Figure
Parallel Excluded Volume Tempering for Polymer Melts
We have developed a technique to accelerate the acquisition of effectively
uncorrelated configurations for off-lattice models of dense polymer melts which
makes use of both parallel tempering and large scale Monte Carlo moves. The
method is based upon simulating a set of systems in parallel, each of which has
a slightly different repulsive core potential, such that a thermodynamic path
from full excluded volume to an ideal gas of random walks is generated. While
each system is run with standard stochastic dynamics, resulting in an NVT
ensemble, we implement the parallel tempering through stochastic swaps between
the configurations of adjacent potentials, and the large scale Monte Carlo
moves through attempted pivot and translation moves which reach a realistic
acceptance probability as the limit of the ideal gas of random walks is
approached. Compared to pure stochastic dynamics, this results in an increased
efficiency even for a system of chains as short as monomers, however
at this chain length the large scale Monte Carlo moves were ineffective. For
even longer chains the speedup becomes substantial, as observed from
preliminary data for
Partial domain wall partition functions
We consider six-vertex model configurations on an n-by-N lattice, n =< N,
that satisfy a variation on domain wall boundary conditions that we define and
call "partial domain wall boundary conditions". We obtain two expressions for
the corresponding "partial domain wall partition function", as an
(N-by-N)-determinant and as an (n-by-n)-determinant. The latter was first
obtained by I Kostov. We show that the two determinants are equal, as expected
from the fact that they are partition functions of the same object, that each
is a discrete KP tau-function, and, recalling that these determinants represent
tree-level structure constants in N=4 SYM, we show that introducing 1-loop
corrections, as proposed by N Gromov and P Vieira, preserves the determinant
structure.Comment: 30 pages, LaTeX. This version, which appeared in JHEP, has an
abbreviated abstract and some minor stylistic change
ABJ(M) Chiral Primary Three-Point Function at Two-loops
This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%Article funded by SCOAP
Axisymmetric pulse recycling and motion in bulk semiconductors
The Kroemer model for the Gunn effect in a circular geometry (Corbino disks)
has been numerically solved. The results have been interpreted by means of
asymptotic calculations. Above a certain onset dc voltage bias, axisymmetric
pulses of the electric field are periodically shed by an inner circular
cathode. These pulses decay as they move towards the outer anode, which they
may not reach. As a pulse advances, the external current increases continuously
until a new pulse is generated. Then the current abruptly decreases, in
agreement with existing experimental results. Depending on the bias, more
complex patterns with multiple pulse shedding are possible.Comment: 8 pages, 15 figure
- âŠ