91 research outputs found
Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research
A new simulation chamber has been built at the Interuniversitary Laboratory of Atmospheric Systems (LISA). The CESAM chamber (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) is designed to allow research in multiphase atmospheric (photo-) chemistry which involves both gas phase and condensed phase processes including aerosol and cloud chemistry. CESAM has the potential to carry out variable temperature and pressure experiments under a very realistic artificial solar irradiation. It consists of a 4.2 m<sup>3</sup> stainless steel vessel equipped with three high pressure xenon arc lamps which provides a controlled and steady environment. Initial characterization results, all carried out at 290â297 K under dry conditions, concerning lighting homogeneity, mixing efficiency, ozone lifetime, radical sources, NO<sub>y</sub> wall reactivity, particle loss rates, background PM, aerosol formation and cloud generation are given. Photolysis frequencies of NO<sub>2</sub> and O<sub>3</sub> related to chamber radiation system were found equal to (4.2 Ă 10<sup>&minus;3</sup> s<sup>&minus;1</sup>) for <i>J</i><sub>NO<sub>2</sub></sub> and (1.4 Ă 10<sup>&minus;5</sup> s<sup>&minus;1</sup>) for <i>J</i><sub>O<sup>1</sup>D</sub> which is comparable to the solar radiation in the boundary layer. An auxiliary mechanism describing NO<sub>y</sub> wall reactions has been developed. Its inclusion in the Master Chemical Mechanism allowed us to adequately model the results of experiments on the photo-oxidation of propene-NO<sub>x</sub>-Air mixtures. Aerosol yields for the &alpha;-pinene + O<sub>3</sub> system chosen as a reference were determined and found in good agreement with previous studies. Particle lifetime in the chamber ranges from 10 h to 4 days depending on particle size distribution which indicates that the chamber can provide high quality data on aerosol aging processes and their effects. Being evacuable, it is possible to generate in this new chamber clouds by fast expansion or saturation with or without the presence of pre-existing particles, which will provide a multiphase environment for aerosol-droplet interaction
Measurement of alkyl and multifunctional organic nitrates by proton-transfer-reaction mass spectrometry
A commercial PTR-TOF-MS has been optimized in order to allow the measurement
of individual organic nitrates in the atmosphere. This has been accomplished
by shifting the distribution between different ionizing analytes,
H3O+ââŻH3O+(H2O)n or NO+ââŻNO2+.
The proposed approach has been proven to be appropriate for the online
detection of individual alkyl nitrates and functionalized nitrates. It has
been shown that hydroxyl and ketonitrates have a high affinity towards
NO+, leading to the formation of an adduct that allows the easy
identification of the organic nitrate (R) from the RâNO+ ion signal.
The recorded sensitivities for both ionization modes correspond to detection
limits of tens ofâŻpptâŻminâ1 in the case of hydroxy- and ketonitrates.
Alkyl nitrates exhibit a moderate affinity towards NO+ ionization
leading to detection units of few hundreds ofâŻppt and the highest
sensitivity in H3O+ mode was obtained for the water adducts
signals. However, this method exhibits much lower capabilities for the
detection of peroxyacetyl nitrates with detection limits in the ppb range
Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment
The MEGAPOLI (Megacities: Emissions, urban, regional and Global
Atmospheric POLlution and climate effects, and Integrated tools for
assessment and mitigation) experiment took place in July 2009. The aim of this campaign
was to study the aging and reactions of aerosol and gas-phase emissions in
the city of Paris. Three ground-based measurement sites and several mobile
platforms including instrument equipped vehicles and the ATR-42 aircraft
were involved. We present here the variations in particle- and gas-phase
species over the city of Paris, using a combination of high-time resolution
measurements aboard the ATR-42 aircraft. Particle chemical composition was
measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), giving detailed information on the non-refractory submicron
aerosol species. The mass concentration of black carbon (BC), measured by a
particle absorption soot photometer (PSAP), was used as a marker to identify
the urban pollution plume boundaries. Aerosol mass concentrations and
composition were affected by air-mass history, with air masses that spent
longest time over land having highest fractions of organic aerosol and
higher total mass concentrations. The Paris plume is mainly composed of
organic aerosol (OA), BC, and nitrate aerosol, as well as high
concentrations of anthropogenic gas-phase species such as toluene, benzene,
and NO<sub>x</sub>. Using BC and CO as tracers for air-mass dilution, we observe
the ratio of ÎOA / ÎBC and ÎOA / ÎCO increase
with increasing photochemical age (âlog(NO<sub>x</sub> / NO<sub>y</sub>)). Plotting the
equivalent ratios of different organic aerosol species (LV-OOA, SV-OOA, and
HOA) illustrate that the increase in OA is a result of secondary organic
aerosol (SOA) formation. Within Paris the changes in the ÎOA / ΔCO are similar to those observed during other studies in London, Mexico
City, and in New England, USA. Using the measured SOA volatile organic compounds (VOCs) species together
with organic aerosol formation yields, we were able to predict ~50% of
the measured organics. These airborne measurements during the MEGAPOLI
experiment show that urban emissions contribute to the formation of OA and
have an impact on aerosol composition on a regional scale
Secondary organic aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles
Abstract. The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isopreneâŻââŻNOxâŻââŻlight system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.
The authors thank Arnaud Allanic, Sylvain Ravier, Pascal Renard and Pascal Zapf for their contributions in the experiments. The authors also acknowledge the institutions that have provided financial support: the French National Institute for Geophysical Research (CNRS-INSU) within the LEFE-CHAT program through the project âImpact de la chimie des nuages sur la formation dâaĂ©rosols organiques secondaires dans lâatmosphĂšreâ and the French National Agency for Research (ANR) project CUMULUS ANR-2010-BLAN-617-01. This work was also supported by the EC within the I3 project âIntegrating of European Simulation Chambers for Investigating Atmospheric Processesâ (EUROCHAMP-2, contract no. 228335). The authors thank the MASSALYA instrumental platform (Aix Marseille UniversitĂ©, lce.univ-amu.fr) for the analysis and measurements used in this paper.This is the final version of the article. It first appeared from Copernicus Publications via http://dx.doi.org/10.5194/acp-16-1747-201
Wet deposition in the remote western and central Mediterranean as a source of trace metals to surface seawater
Abstract. This study reports the only recent characterization of two contrasted wet deposition events collected during the PEACETIME (ProcEss studies at the AirâsEa Interface after dust deposition in the MEditerranean Sea) cruise in the open Mediterranean Sea (Med Sea) and their impact on trace metal (TM) marine stocks. Rain samples were analysed for Al, 12 TMs (Co, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Ti, V and Zn) and nutrient (N, P, dissolved organic carbon) concentrations. The first rain sample collected in the Ionian Sea (Rain ION) was a typical regional background wet deposition event, whereas the second rain sample collected in the Algerian Basin (Rain FAST) was a Saharan dust wet deposition event. Even in the remote Med Sea, all background TM inputs presented an anthropogenic signature, except for Fe, Mn and Ti. The concentrations of TMs in the two rain samples were significantly lower compared to concentrations in rains collected at coastal sites reported in the literature, due to the decrease in anthropogenic emissions during the preceding decades. The atmospheric TM inputs were mainly dissolved forms, even in dusty Rain FAST. The TM stocks in the mixed layer (ML, 0â20âm) at the FAST station before and after the event showed that the atmospheric inputs were a significant supply of particulate TMs and dissolved Fe and Co for surface seawater. Even if the wet deposition delivers TMs mainly in soluble form, the post-deposition aerosol dissolution could to be a key additional pathway in the supply of dissolved TMs. At the scale of the western and central Mediterranean, the atmospheric inputs were of the same order of magnitude as ML stocks for dissolved Fe, Co and Zn, highlighting the role of the atmosphere in their biogeochemical cycles in the stratified Med Sea. In case of intense dust-rich wet deposition events, the role of atmospheric inputs as an external source was extended to dissolved Co, Fe, Mn, Pb and Zn. Our results suggest that the wet deposition constitutes only a source of some of dissolved TMs for Med Sea surface waters. The contribution of dry deposition to the atmospheric TM inputs needs to be investigated.</jats:p
Aerosol optical depth climatology from the high-resolution MAIAC product over Europe: differences between major European cities and their surrounding environments
The aerosol optical depth (AOD) is a derived measurement useful to investigate the aerosol load and its distribution at different
spatio-temporal scales. In this work we use long-term (2000â2021) MAIAC
(Multi-Angle Implementation of Atmospheric Correction) retrievals with 1âkm resolution to investigate the climatological AOD variability and trends at different scales in Europe: a continental (30â60ââN,
20ââWâ40ââE), a regional (100âĂâ100âkm2) and an urbanâlocal scale (3âĂâ3âkm2). The AOD climatology at the continental
scale shows the highest values during summer (JJA) and the lowest during
winter (DJF) seasons. Regional and urbanâlocal scales are investigated for
21 cities in Europe, including capitals and large urban
agglomerations. Analyses show AOD average (550ânm) values between 0.06 and
0.16 at the urbanâlocal scale while also displaying a strong northâsouth
gradient. This gradient corresponds to a similar one in the European
background, with higher AOD being located over the Po Valley, the
Mediterranean Basin and eastern Europe. Average enhancements of the local
with respect to regional AOD of 57â%, 55â%, 39â% and 32â% are found for large metropolitan centers such as Barcelona, Lisbon, Paris and Athens, respectively, suggesting a non-negligible enhancement of the aerosol burden through local emissions. Negative average deviations are observed for other cities, such as Amsterdam (â17â%) and Brussels (â6â%), indicating higher regional background signal and suggesting a heterogeneous aerosol spatial distribution that conceals the urbanâlocal signal. Finally, negative statistically significant AOD trends for the entire European continent are observed. A stronger decrease rate at the regional scale with respect to the
local scale occurs for most of the cities under investigation.</p
Study of the unknown HONO daytime source at a European suburban site during the MEGAPOLI summer and winter field campaigns
International audienceNitrous acid measurements were carried out during the MEGAPOLI summer and winter field campaigns at SIRTA observatory in Paris surroundings. Highly variable HONO levels were observed during the campaigns, ranging from 10 ppt to 500 ppt in summer and from 10 ppt to 1.7 ppb in winter. Significant HONO mixing ratios have also been measured during daytime hours, comprised between some tenth of ppt and 200 ppt for the summer campaign and between few ppt and 1 ppb for the winter campaign. Ancillary measurements, such as NOx , O3 , photolysis frequencies, meteorological parameters (pressure, temperature, relative humidity , wind speed and wind direction), black carbon concentration , total aerosol surface area, boundary layer height and soil moisture, were conducted during both campaigns. In addition, for the summer period, OH radical measurements were made with a CIMS (Chemical Ionisation Mass Spectrometer). This large dataset has been used to investigate the HONO budget in a suburban environment. To do so, calculations of HONO concentrations using PhotoStationary State (PSS) approach have been performed, for daytime hours. The comparison of these calculations with measured HONO concentrations revealed an underestimation of the calculations making evident a missing source term for both campaigns. This unknown HONO source exhibits a bell-shaped like average diurnal profile with a maximum around noon of approximately 0.7 ppb hâ1 and 0.25 ppb hâ1 , during summer and winter respectively. This source is the main HONO source during daytime hours for both campaigns. In both cases, this source shows a slight positive correlation with J (NO2) and the product between J (NO2) and soil moisture. This original approach had, thus, indicated that this missing source is photolytic and might be heterogeneous occurring at ground surface and involving water content available on the ground. Published by Copernicus Publications on behalf of the European Geosciences Union. 2806 V. Michoud et al.: Study of the unknown HONO daytime sourc
Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols
Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.Research at the University of Cambridge was supported by a Marie Curie Intra-European fellowship (project no. 254319) and the ERC grant no. 279405. We thank the SAPHIR and TNA2012 team in JĂŒlich for supporting our measurements and the support by EUROCHAMP2 contract no. 228335. The field-work was funded by ERC grant 227463 and the Academy of Finland Centre of Excellence (grants 1118615 and 272041) and by the Office of Science (BER), US Department of Energy via Biogenic Aerosols - Effects on Clouds and Climate (BAECC). European Unionâs Horizon 2020 research and innovation programme under grant agreement no. 654109 and previously from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254. We thank the Met Office for use of the NAME model. S.C. thanks the UK Natural Environment Research Council for her studentship
Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study
This paper presents new laboratory measurements
of the mass absorption efficiency (MAE) between 375 and
850 nm for 12 individual samples of mineral dust from different
source areas worldwide and in two size classes: PM10:6
(mass fraction of particles of aerodynamic diameter lower
than 10.6 \u3bcm) and PM2:5 (mass fraction of particles of aerodynamic
diameter lower than 2.5 \u3bcm). The experiments were
performed in the CESAM simulation chamber using mineral
dust generated from natural parent soils and included optical
and gravimetric analyses.
The results show that the MAE values are lower for
the PM10:6 mass fraction (range 37\u2013135x10-3 m2 g-1 at
375 nm) than for the PM2:5 (range 95\u2013711x10-3 m2 g-1 at
375 nm) and decrease with increasing wavelength as lambda-AAE,
where the \uc5ngstr\uf6m absorption exponent (AAE) averages
between 3.3 and 3.5, regardless of size. The size independence
of AAE suggests that, for a given size distribution, the oxide fraction, which could ease the application and the validation
of climate models that now start to include the representation
of the dust composition, as well as for remote
sensing of dust absorption in the UV\u2013vis spectral region
- âŠ