353 research outputs found

    Sphere-to-cylinder transition in hierarchical electrostatic complexes

    Full text link
    We report the formation of colloidal complexes resulting from the electrostatic co-assembly between anionic surfactants and cationic polyelectrolytes or block copolymers. Combining light and x-ray scattering experiments with cryogenic transmission and optical microscopy, we emphasize a feature rarely addressed in the formation of the electrostatic complexes, namely the role of the mixing concentration on the microstructure. At low mixing concentration, electrostatic complexes made from cationic-neutral copolymers and alkyl sulfate surfactants exhibit spherical core-shell microstructures. With increasing concentration, the complexes undergo a sphere-to-cylinder transition, yielding elongated aggregates with diameter 50 nm and length up to several hundreds of nanometers. From the comparison between homo- and diblock polymer phase behaviors, it is suggested that the unidimensional growth is driven by the ability of the surfactant to self-assemble into cylindrical micelles, and in particular when these surfactants are complexed with oppositely charged polymers.Comment: 7 pages, 9 figures, 2 tables paper accepted at Colloid and Polymer Science, 31-Mar-0

    The role of surface charge in the interaction of nanoparticles with model pulmonary surfactants

    Get PDF
    Inhaled nanoparticles traveling through the airways are able to reach the respiratory zone of the lungs. In such event, the incoming particles first enter in contact with the liquid lining the alveolar epithelium, the pulmonary surfactant. The pulmonary surfactant is composed of lipids and proteins that are assembled into large vesicular structures. The question of the nature of the biophysicochemical interaction with the pulmonary surfactant is central to understand how the nanoparticles can cross the air-blood barrier. Here we explore the phase behavior of sub-100 nm particles and surfactant substitutes in controlled conditions. Three types of surfactant mimetics, including the exogenous substitute Curosurf, a drug administred to infants with respiratory distress syndrome are tested together with aluminum oxide (Al2O3), silicon dioxide (SiO2) and polymer (latex) nanoparticles. The main result here is the observation of the spontaneous nanoparticle-vesicle aggregation induced by Coulombic attraction. The role of the surface charges is clearly established. We also evaluate the supported lipid bilayer formation recently predicted and find that in the cases studied these structures do not occur. Pertaining to the aggregate internal structure, fluorescence microscopy ascertains that the vesicles and particles are intermixed at the nano- to microscale. With particles acting as stickers between vesicles, it is anticipated that the presence of inhaled nanomaterials in the alveolar spaces could significantly modify the interfacial and bulk properties of the pulmonary surfactant and interfere with the lung physiology.Comment: 20 pages, 6 figure

    Growth mechanism of nanostructured superparamagnetic rods obtained by electrostatic co-assembly

    Full text link
    We report on the growth of nanostructured rods fabricated by electrostatic co-assembly between iron oxide nanoparticles and polymers. The nanoparticles put under scrutiny, {\gamma}-Fe2O3 or maghemite, have diameter of 6.7 nm and 8.3 nm and narrow polydispersity. The co-assembly is driven by i) the electrostatic interactions between the polymers and the particles, and by ii) the presence of an externally applied magnetic field. The rods are characterized by large anisotropy factors, with diameter 200 nm and length comprised between 1 and 100 {\mu}m. In the present work, we provide for the first time the morphology diagram for the rods as a function of ionic strength and concentration. We show the existence of a critical nanoparticle concentration and of a critical ionic strength beyond which the rods do not form. In the intermediate regimes, only tortuous and branched aggregates are detected. At higher concentrations and lower ionic strengths, linear and stiff rods with superparamagnetic properties are produced. Based on these data, a mechanism for the rod formation is proposed. The mechanism proceeds in two steps : the formation and growth of spherical clusters of particles, and the alignment of the clusters induced by the magnetic dipolar interactions. As far as the kinetics of these processes is concerned, the clusters growth and their alignment occur concomitantly, leading to a continuous accretion of particles or small clusters, and a welding of the rodlike structure.Comment: 15 pages, 10 figures, one tabl

    Biophysicochemical interaction of a clinical pulmonary surfactant with nano-alumina

    Full text link
    We report on the interaction of pulmonary surfactant composed of phospholipids and proteins with nanometric alumina (Al2O3) in the context of lung exposure and nanotoxicity. We study the bulk properties of phospholipid/nanoparticle dispersions and determine the nature of their interactions. The clinical surfactant Curosurf, both native and extruded, and a protein-free surfactant are investigated. The phase behavior of mixed surfactant/particle dispersions was determined by optical and electron microscopy, light scattering and zeta potential measurements. It exhibits broad similarities with that of strongly interacting nanosystems such as polymers, proteins or particles, and supports the hypothesis of electrostatic complexation. At a critical stoichiometry, micron sized aggregates arising from the association between oppositely charged vesicles and nanoparticles are formed. Contrary to the models of lipoprotein corona or of particle wrapping, our work shows that vesicles maintain their structural integrity and trap the particles at their surfaces. The agglomeration of particles in surfactant phase is a phenomenon of importance since it could change the interactions of the particles with lung cells.Comment: 19 pages 9 figure

    The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles

    Full text link
    Engineered inorganic nanoparticles are essential components in the development of nanotechnologies. For applications in nanomedicine, particles need to be functionalized to ensure a good dispersibility in biological fluids. In many cases however, functionalization is not sufficient : the particles become either coated by a corona of serum proteins or precipitate out of the solvent. In the present paper, we show that by changing the coating of iron oxide nanoparticles from a low-molecular weight ligand (citrate ions) to small carboxylated polymers (poly(acrylic acid)), the colloidal stability of the dispersion is improved and the adsorption/internalization of iron towards living mammalian cells is profoundly affected. Citrate-coated particles are shown to destabilize in all fetal-calf-serum based physiological conditions tested, whereas the polymer coated particles exhibit an outstanding dispersibility as well as a structure devoid of protein corona. The interactions between nanoparticles and human lymphoblastoid cells are investigated by transmission electron microscopy and flow cytometry. Two types of nanoparticle/cell interactions are underlined. Iron oxides are found either adsorbed on the cellular membranes, or internalized into membrane-bound endocytosis compartments. For the precipitating citrate-coated particles, the kinetics of interactions reveal a massive and rapid adsorption of iron oxide on the cell surfaces. The quantification of the partition between adsorbed and internalized iron was performed from the cytometry data. The results highlight the importance of resilient adsorbed nanomaterials at the cytoplasmic membrane.Comment: 21 pages, 11 figures, accepted at Biomaterials (2011

    Magnetic wire-based sensors for the micro-rheology of complex fluids

    Full text link
    We propose a simple micro-rheology technique to evaluate the viscoelastic properties of complex fluids. The method is based on the use of magnetic wires of a few microns in length submitted to a rotational magnetic field. In this work, the method is implemented on a surfactant wormlike micellar solution that behaves as an ideal Maxwell fluid. With increasing frequency, the wires undergo a transition between a steady and a hindered rotation regime. The study shows that the average rotational velocity and the amplitudes of the oscillations obey scaling laws with well-defined exponents. From a comparison between model predictions and experiments, the rheological parameters of the fluid are determined.Comment: 14 pages 7 figures, accepted in Physical Review
    • …
    corecore