1,153 research outputs found

    Scent of danger: floc formation by a freshwater bacterium is induced by supernatants from a predator-prey coculture

    Full text link
    We investigated predator-prey interactions in a model system consisting of the bacterivorous flagellate Poterioochromonas sp. strain DS and the freshwater bacterium Sphingobium sp. strain Z007. This bacterial strain tends to form a subpopulation of grazing-resistant microscopic flocs, presumably by aggregation. Enhanced formation of such flocs could be demonstrated in static batch culture experiments in the presence of the predator. The ratio of aggregates to single cells reached >0.1 after 120 h of incubation in an oligotrophic growth medium. The inoculation of bacteria into supernatants from cocultures of bacteria and flagellates (grown in oligotrophic or in rich media) also resulted in a substantially higher level of floc formation than that in supernatants from bacterial monocultures only. After separation of supernatants on a C(18) cartridge, the aggregate-inducing activity could be assigned to the 50% aqueous methanolic fraction, and further separation of this bioactive fraction could be achieved by high-pressure liquid chromatography. These results strongly suggest the involvement of one or several chemical factors in the induction of floc formation by Sphingobium sp. strain Z007 that are possibly released into the surrounding medium by flagellate grazing

    Experimental evidence for the role of cantori as barriers in a quantum system

    Full text link
    We investigate the effect of cantori on momentum diffusion in a quantum system. Ultracold caesium atoms are subjected to a specifically designed periodically pulsed standing wave. A cantorus separates two chaotic regions of the classical phase space. Diffusion through the cantorus is classically predicted. Quantum diffusion is only significant when the classical phase-space area escaping through the cantorus per period greatly exceeds Planck's constant. Experimental data and a quantum analysis confirm that the cantori act as barriers.Comment: 19 pages including 9 figures, Accepted for publication in Physical Review E in March 199

    Quantum and classical chaos for a single trapped ion

    Get PDF
    In this paper we investigate the quantum and classical dynamics of a single trapped ion subject to nonlinear kicks derived from a periodic sequence of Guassian laser pulses. We show that the classical system exhibits diffusive growth in the energy, or 'heating', while quantum mechanics suppresses this heating. This system may be realized in current single trapped-ion experiments with the addition of near-field optics to introduce tightly focussed laser pulses into the trap.Comment: 8 pages, REVTEX, 8 figure

    Regularity for eigenfunctions of Schr\"odinger operators

    Full text link
    We prove a regularity result in weighted Sobolev spaces (or Babuska--Kondratiev spaces) for the eigenfunctions of a Schr\"odinger operator. More precisely, let K_{a}^{m}(\mathbb{R}^{3N}) be the weighted Sobolev space obtained by blowing up the set of singular points of the Coulomb type potential V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N} \frac{c_{ij}}{|x_i-x_j|}, x in \mathbb{R}^{3N}, b_j, c_{ij} in \mathbb{R}. If u in L^2(\mathbb{R}^{3N}) satisfies (-\Delta + V) u = \lambda u in distribution sense, then u belongs to K_{a}^{m} for all m \in \mathbb{Z}_+ and all a \le 0. Our result extends to the case when b_j and c_{ij} are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a<3/2.Comment: to appear in Lett. Math. Phy

    Manifolds with small Dirac eigenvalues are nilmanifolds

    Full text link
    Consider the class of n-dimensional Riemannian spin manifolds with bounded sectional curvatures and diameter, and almost non-negative scalar curvature. Let r=1 if n=2,3 and r=2^{[n/2]-1}+1 if n\geq 4. We show that if the square of the Dirac operator on such a manifold has rr small eigenvalues, then the manifold is diffeomorphic to a nilmanifold and has trivial spin structure. Equivalently, if M is not a nilmanifold or if M is a nilmanifold with a non-trivial spin structure, then there exists a uniform lower bound on the r-th eigenvalue of the square of the Dirac operator. If a manifold with almost nonnegative scalar curvature has one small Dirac eigenvalue, and if the volume is not too small, then we show that the metric is close to a Ricci-flat metric on M with a parallel spinor. In dimension 4 this implies that M is either a torus or a K3-surface

    Dynamical Localization in Quasi-Periodic Driven Systems

    Full text link
    We investigate how the time dependence of the Hamiltonian determines the occurrence of Dynamical Localization (DL) in driven quantum systems with two incommensurate frequencies. If both frequencies are associated to impulsive terms, DL is permanently destroyed. In this case, we show that the evolution is similar to a decoherent case. On the other hand, if both frequencies are associated to smooth driving functions, DL persists although on a time scale longer than in the periodic case. When the driving function consists of a series of pulses of duration σ\sigma, we show that the localization time increases as σ2\sigma^{-2} as the impulsive limit, σ0\sigma\to 0, is approached. In the intermediate case, in which only one of the frequencies is associated to an impulsive term in the Hamiltonian, a transition from a localized to a delocalized dynamics takes place at a certain critical value of the strength parameter. We provide an estimate for this critical value, based on analytical considerations. We show how, in all cases, the frequency spectrum of the dynamical response can be used to understand the global features of the motion. All results are numerically checked.Comment: 7 pages, 5 figures included. In this version is that Subsection III.B and Appendix A on the quasiperiodic Fermi Accelerator has been replaced by a reference to published wor

    Quantum Poincar\'e Recurrences

    Full text link
    We show that quantum effects modify the decay rate of Poincar\'e recurrences P(t) in classical chaotic systems with hierarchical structure of phase space. The exponent p of the algebraic decay P(t) ~ 1/t^p is shown to have the universal value p=1 due to tunneling and localization effects. Experimental evidence of such decay should be observable in mesoscopic systems and cold atoms.Comment: revtex, 4 pages, 4 figure

    Stationary phase slip state in quasi-one-dimensional rings

    Full text link
    The nonuniform superconducting state in a ring in which the order parameter vanishing at one point is studied. This state is characterized by a jump of the phase by π\pi at the point where the order parameter becomes zero. In uniform rings such a state is a saddle-point state and consequently unstable. However, for non-uniform rings with e.g. variations of geometrical or physical parameters or with attached wires this state can be stabilized and may be realized experimentally.Comment: 6 pages, 7 figures, RevTex 4.0 styl

    A Numerical Investigation of the Effects of Classical Phase Space Structure on a Quantum System

    Full text link
    We present a detailed numerical study of a chaotic classical system and its quantum counterpart. The system is a special case of a kicked rotor and for certain parameter values possesses cantori dividing chaotic regions of the classical phase space. We investigate the diffusion of particles through a cantorus; classical diffusion is observed but quantum diffusion is only significant when the classical phase space area escaping through the cantorus per kicking period greatly exceeds Planck's constant. A quantum analysis confirms that the cantori act as barriers. We numerically estimate the classical phase space flux through the cantorus per kick and relate this quantity to the behaviour of the quantum system. We introduce decoherence via environmental interactions with the quantum system and observe the subsequent increase in the transport of quantum particles through the boundary.Comment: 15 pages, 22 figure
    corecore