427 research outputs found

    Magnetic Properties of (VO)_2P_2O_7 from Frustrated Interchain Coupling

    Full text link
    Neutron-scattering experiments on (VO)_2P_2O_7 reveal both a gapped magnon dispersion and an unexpected, low-lying second mode. The proximity and intensity of these modes suggest a frustrated coupling between the alternating spin chains. We deduce the minimal model containing such a frustration, and show that it gives an excellent account of the magnon dispersion, static susceptibility and electron spin resonance absorption. We consider two-magnon states which bind due to frustration, and demonstrate that these may provide a consistent explanation for the second mode.Comment: RevTeX, 5 pages, 6 figures, compressed from first versio

    Excitations in one-dimensional S=1/2 quantum antiferromagnets

    Full text link
    The transition from dimerized to uniform phases is studied in terms of spectral weights for spin chains using continuous unitary transformations (CUTs). The spectral weights in the S=1 channel are computed perturbatively around the limit of strong dimerization. We find that the spectral weight is concentrated mainly in the subspaces with a small number of elementary triplets (triplons), even for vanishing dimerization. So, besides spinons, triplons may be used as elementary excitations in spin chains. We conclude that there is no necessity to use fractional excitations in low-dimensional, undoped or doped quantum antiferromagnets.Comment: 4 pages, 1 figure include

    Temperature in One-Dimensional Bosonic Mott insulators

    Full text link
    The Mott insulating phase of a one-dimensional bosonic gas trapped in optical lattices is described by a Bose-Hubbard model. A continuous unitary transformation is used to map this model onto an effective model conserving the number of elementary excitations. We obtain quantitative results for the kinetics and for the spectral weights of the low-energy excitations for a broad range of parameters in the insulating phase. By these results, recent Bragg spectroscopy experiments are explained. Evidence for a significant temperature of the order of the microscopic energy scales is found.Comment: 8 pages, 7 figure

    Excitation Spectra of Structurally Dimerized and Spin-Peierls Chains in a Magnetic Field

    Full text link
    The dynamical spin structure factor and the Raman response are calculated for structurally dimerized and spin-Peierls chains in a magnetic field, using exact diagonalization techniques. In both cases there is a spin liquid phase composed of interacting singlet dimers at small fields h < h_c1, an incommensurate regime (h_c1 < h < h_c2) in which the modulation of the triplet excitation spectra adapts to the applied field, and a fully spin polarized phase above an upper critical field h_c2. For structurally dimerized chains, the spin gap closes in the incommensurate phase, whereas spin-Peierls chains remain gapped. In the spin liquid regimes, the dominant feature of the triplet spectra is a one-magnon bound state, separated from a continuum of states at higher energies. There are also indications of a singlet bound state above the one-magnon triplet.Comment: RevTex, 10 pages with 8 eps figure

    Efficient Coherent Control by Optimized Sequences of Pulses of Finite Duration

    Full text link
    Reliable long-time storage of arbitrary quantum states is a key element for quantum information processing. In order to dynamically decouple a spin or quantum bit from a dephasing environment, we introduce an optimized sequence of NN control pulses of finite durations \tau\pp and finite amplitudes. The properties of this sequence of length TT stem from a mathematically rigorous derivation. Corrections occur only in order TN+1T^{N+1} and \tau\pp^3 without mixed terms such as T^N\tau\pp or T^N\tau\pp^2. Based on existing experiments, a concrete setup for the verification of the properties of the advocated realistic sequence is proposed.Comment: 8 pages, 1 figur

    A magnetic model for the incommensurate I phase of spin-Peierls systems

    Full text link
    A magnetic model is proposed for describing the incommensurate I phase of spin-Peierls systems. Based on the harmonicity of the lattice distortion, its main ingredient is that the distortion of the lattice adjusts to the average magnetization such that the system is always gapful. The presence of dynamical incommensurabilities in the fluctuation spectra is also predicted. Recent experimental results for CuGeO_3 obtained by NMR, ESR and light scattering absorption are well understood within this model.Comment: 8 pages, 3 figures, Latex with EPL style files all include

    Magnetic properties of (VO)_2P_2O_7: two-plane structure and spin-phonon interactions

    Full text link
    Detailed experiments on single-crystal (VO)_2P_2O_7 continue to reveal new and unexpected features. We show that a model composed of two, independent planes of spin chains with frustrated magnetic coupling is consistent with nuclear magnetic resonance and inelastic neutron scattering measurements. The pivotal role of PO_4 groups in mediating intrachain exchange interactions explains both the presence of two chain types and their extreme sensitivity to certain lattice vibrations, which results in the strong magnetoelastic coupling observed by light scattering. We compute the respective modifications of the spin and phonon dynamics due to this coupling, and illustrate their observable consequences on the phonon frequencies, magnon dispersions, static susceptibility and specific heat.Comment: 10 pages, 9 figure

    One-dimensional fermionic systems after interaction quenches and their description by bosonic field theories

    Full text link
    We show that the dynamics of quenches in one dimension far off equilibrium can be described by power laws, but with exponents differing from the fully renormalized ones at lowest energies. Instead they depend on the initial state and its excitation energy. Furthermore, we found that for quenches to strong interactions unexpected similarities between systems in one and in infinite dimensions occur, indicating the dominance of local processes.Comment: This is a distinctly revised version which is focussed on the description of the dynamics by bosonization technique

    Systematic Mapping of the Hubbard Model to the Generalized t-J Model

    Full text link
    The generalized t-J model conserving the number of double occupancies is constructed from the Hubbard model at and in the vicinity of half-filling at strong coupling. The construction is realized by a self-similar continuous unitary transformation. The flow equation is closed by a truncation scheme based on the spatial range of processes. We analyze the conditions under which the t-J model can be set up and we find that it can only be defined for sufficiently large interaction. There, the parameters of the effective model are determined.Comment: 16 pages, 13 figures included. v2: Order of sections changed. Calculation and discussion of apparent gap in Section IV.A correcte
    • …
    corecore