3,444 research outputs found

    Distributed Analysis within the LHC computing Grid

    Get PDF
    The distributed data analysis using Grid resources is one of the funda- mental applications in high energy physics to be addressed and realized before the start of LHC data taking. The needs to manage the resources are very high. In every experiment up to a thousand physicist will be submitting analysis jobs into the Grid. Appropriate user interfaces and helper applications have to be made available to assure that all users can use the Grid without too much expertise in Grid technology. These tools enlarge the number of Grid users from a few production adminis- trators to potentially all participating physicists. The GANGA job management system (http://cern.ch/ganga), devel- oped as a common project between the ATLAS and LHCb experiments provides and integrates these kind of tools. GANGA provides a sim- ple and consistent way of preparing, organizing and executing analysis tasks within the experiment analysis framework, implemented through a plug-in system. It allows trivial switching between running test jobs on a local batch system and running large-scale analyzes on the Grid, hiding Grid technicalities. We will be reporting on the plug-ins and our experiences of distributed data analysis using GANGA within the ATLAS experiment and the EGEE/LCG infrastructure. The integration and interaction with the ATLAS data management system DQ2/DDM into GANGA is a key functionality. In combination with the job splitting mechanism large amounts of analysis jobs can be sent to the locations of data following the ATLAS computing model. GANGA supports tasks of user analysis with reconstructed data and small scale production of Monte Carlo data

    A Cosmic Ray Measurement Facility for ATLAS Muon Chambers

    Full text link
    Monitored Drift Tube (MDT) chambers will constitute the large majority of precision detectors in the Muon Spectrometer of the ATLAS experiment at the Large Hadron Collider at CERN. For commissioning and calibration of MDT chambers, a Cosmic Ray Measurement Facility is in operation at Munich University. The objectives of this facility are to test the chambers and on-chamber electronics, to map the positions of the anode wires within the chambers with the precision needed for standalone muon momentum measurement in ATLAS, and to gain experience in the operation of the chambers and on-line calibration procedures. Until the start of muon chamber installation in ATLAS, 88 chambers built at the Max Planck Institute for Physics in Munich have to be commissioned and calibrated. With a data taking period of one day individual wire positions can be measured with an accuracy of 8.3 micrometers in the chamber plane and 27 micrometers in the direction perpendicular to that plane.Comment: 14+1 pages, 11 figures, contributed paper to the EPS2003 conference, Aache

    Grid site testing for ATLAS with Hammer Cloud

    Get PDF
    With the exponential growth of LHC (Large Hadron Collider) data in 2012, distributed computing has become the established way to analyze collider data. The ATLAS grid infrastructure includes more than 130 sites worldwide, ranging from large national computing centers to smaller university clusters. HammerCloud was previously introduced with the goals of enabling virtual organisations (VO) and site-administrators to run validation tests of the site and software infrastructure in an automated or on-demand manner. The HammerCloud infrastructure has been constantly improved to support the addition of new test workflows. These new workflows comprise e.g. tests of the ATLAS nightly build system, ATLAS Monte Carlo production system, XRootD federation (FAX) and new site stress test workflows. We report on the development, optimization and results of the various components in the HammerCloud framework

    Measurement of Semileptonic Branching Fractions of B Mesons to Narrow D** States

    Get PDF
    Using the data accumulated in 2002-2004 with the DO detector in proton-antiproton collisions at the Fermilab Tevatron collider with centre-of-mass energy 1.96 TeV, the branching fractions of the decays B -> \bar{D}_1^0(2420) \mu^+ \nu_\mu X and B -> \bar{D}_2^{*0}(2460) \mu^+ \nu_\mu X and their ratio have been measured: BR(\bar{b}->B) \cdot BR(B-> \bar{D}_1^0 \mu^+ \nu_\mu X) \cdot BR(\bar{D}_1^0 -> D*- pi+) = (0.087+-0.007(stat)+-0.014(syst))%; BR(\bar{b}->B)\cdot BR(B->D_2^{*0} \mu^+ \nu_\mu X) \cdot BR(\bar{D}_2^{*0} -> D*- \pi^+) = (0.035+-0.007(stat)+-0.008(syst))%; and (BR(B -> \bar{D}_2^{*0} \mu^+ \nu_\mu X)BR(D2*0->D*- pi+)) / (BR(B -> \bar{D}_1^{0} \mu^+ \nu_\mu X)\cdot BR(\bar{D}_1^{0}->D*- \pi^+)) = 0.39+-0.09(stat)+-0.12(syst), where the charge conjugated states are always implied.Comment: submitted to Phys. Rev. Let

    Measurement of the Lifetime Difference in the B_s^0 System

    Get PDF
    We present a study of the decay B_s^0 -> J/psi phi We obtain the CP-odd fraction in the final state at time zero, R_perp = 0.16 +/- 0.10 (stat) +/- 0.02 (syst), the average lifetime of the (B_s, B_sbar) system, tau (B_s^0) =1.39^{+0.13}_{-0.16} (stat) ^{+0.01}_{-0.02} (syst) ps, and the relative width difference between the heavy and light mass eigenstates, Delta Gamma/Gamma = (Gamma_L - Gamma_H)/Gamma =0.24^{+0.28}_{-0.38} (stat) ^{+0.03}_{-0.04} (syst). With the additional constraint from the world average of the B_s^0$lifetime measurements using semileptonic decays, we find tau (B_s^0)= 1.39 +/- 0.06 ~ps and Delta Gamma/\Gamma = 0.25^{+0.14}_{-0.15}. For the ratio of the B_s^0 and B^0 lifetimes we obtain tau(B_s^0)/tau(B^0)} = 0.91 +/- 0.09 (stat) +/- 0.003 (syst).Comment: submitted to Phys. Rev. Lett. FERMILAB-PUB-05-324-

    Search for R-parity violating supersymmetry via the LLE couplings lambda_{121}, lambda_{122} or lambda_{133} in ppbar collisions at sqrt(s)=1.96 TeV

    Get PDF
    A search for gaugino pair production with a trilepton signature in the framework of R-parity violating supersymmetry via the couplings lambda_121, lambda_122, or lambda_133 is presented. The data, corresponding to an integrated luminosity of L~360/pb, were collected from April 2002 to August 2004 with the D0 detector at the Fermilab Tevatron Collider, at a center-of-mass energy of sqrt(s)=1.96 TeV. This analysis considers final states with three charged leptons with the flavor combinations eel, mumul, and eetau (l=e or mu). No evidence for supersymmetry is found and limits at the 95% confidence level are set on the gaugino pair production cross section and lower bounds on the masses of the lightest neutralino and chargino are derived in two supersymmetric models.Comment: 9 pages, 4 figures (fig2 includes 3 subfigures

    Search for right-handed W bosons in top quark decay

    Full text link
    We present a measurement of the fraction f+ of right-handed W bosons produced in top quark decays, based on a candidate sample of ttˉt\bar{t} events in the lepton+jets decay mode. These data correspond to an integrated luminosity of 230pb^-1, collected by the DO detector at the Fermilab Tevatron ppˉp\bar{p} Collider at sqrt(s)=1.96 TeV. We use a constrained fit to reconstruct the kinematics of the ttˉt\bar{t} and decay products, which allows for the measurement of the leptonic decay angle θ\theta^* for each event. By comparing the cosθ\cos\theta^* distribution from the data with those for the expected background and signal for various values of f+, we find f+=0.00+-0.13(stat)+-0.07(syst). This measurement is consistent with the standard model prediction of f+=3.6x10^-4.Comment: Submitted to Physical Review D Rapid Communications 7 pages, 3 figure

    Measurement of the Bs0B^{0}_{s} Lifetime Using Semileptonic Decays

    Full text link
    We report a measurement of the Bs0B^0_{s} lifetime in the semileptonic decay channel Bs0Dsμ+νXB^0_{s}\to D^-_s \mu^{+}\nu X (and its charge conjugate), using approximately 0.4 fb1^{-1} of data collected with the D0 detector during 2002 -- 2004. We have reconstructed 5176 Dsμ+D^-_s \mu^{+} signal events, where the DsD_s^- is identified via the decay DsϕπD_s^-\to \phi\pi^-, followed by ϕK+K\phi\to K^+ K^-. Using these events, we have measured the Bs0B^0_s lifetime to be τ(Bs0)=1.398±0.044\tau(B^0_{s}) = 1.398 \pm 0.044 (stat)0.025+0.028({stat}) ^{+0.028}_{-0.025} (syst)ps({syst}) {ps}. This is the most precise measurement of the Bs0B_s^0 lifetime to date.Comment: To appear in Phys. Rev. Lett., 7 pages, 2 figure

    Search for Neutral Higgs Bosons Decaying to Tau Pairs in p-pbar Collisions at sqrt(s) = 1.96 TeV

    Full text link
    A search for the production of neutral Higgs bosons Phi decaying into tau^+tau^- final states in p-pbar collisions at a center-of-mass energy of 1.96 TeV is presented. The data, corresponding to an integrated luminosity of up to 348 pb^-1, were collected by the D0 experiment at the Fermilab Tevatron Collider. Since no excess compared to the expectation from standard model processes is found, limits on the production cross section times branching ratio are set. The results are combined with those obtained from the D0 search for Phi b(b) to b-bbar-b(bbar) and are interpreted in the minimal supersymmetric standard model.Comment: Version accpeted by Phys. Rev. Lett. (minor changes
    corecore