86,141 research outputs found
Discussion of three typical Langley Research Center simulation programs
Simulation programs and hardware for air traffic control and lunar flight
Recent progress towards predicting aircraft ground handling performance
Capability implemented in simulating aircraft ground handling performance is reviewed and areas for further expansion and improvement are identified. Problems associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior are discussed and efforts to improve tire/runway friction definition, and simulator fidelity are described. Aircraft braking performance data obtained on several wet runway surfaces are compared to ground vehicle friction measurements. Research to improve methods of predicting tire friction performance are discussed
The strength and timing of the mitochondrial bottleneck in salmon suggests a conserved mechanism in vertebrates
In most species mitochondrial DNA (mtDNA) is inherited maternally in an apparently clonal fashion, although how this is achieved remains uncertain. Population genetic studies show not only that individuals can harbor more than one type of mtDNA (heteroplasmy) but that heteroplasmy is common and widespread across a diversity of taxa. Females harboring a mixture of mtDNAs may transmit varying proportions of each mtDNA type (haplotype) to their offspring. However, mtDNA variants are also observed to segregate rapidly between generations despite the high mtDNA copy number in the oocyte, which suggests a genetic bottleneck acts during mtDNA transmission. Understanding the size and timing of this bottleneck is important for interpreting population genetic relationships and for predicting the inheritance of mtDNA based disease, but despite its importance the underlying mechanisms remain unclear. Empirical studies, restricted to mice, have shown that the mtDNA bottleneck could act either at embryogenesis, oogenesis or both. To investigate whether the size and timing of the mitochondrial bottleneck is conserved between distant vertebrates, we measured the genetic variance in mtDNA heteroplasmy at three developmental stages (female, ova and fry) in chinook salmon and applied a new mathematical model to estimate the number of segregating units (N(e)) of the mitochondrial bottleneck between each stage. Using these data we estimate values for mtDNA Ne of 88.3 for oogenesis, and 80.3 for embryogenesis. Our results confirm the presence of a mitochondrial bottleneck in fish, and show that segregation of mtDNA variation is effectively complete by the end of oogenesis. Considering the extensive differences in reproductive physiology between fish and mammals, our results suggest the mechanism underlying the mtDNA bottleneck is conserved in these distant vertebrates both in terms of it magnitude and timing. This finding may lead to improvements in our understanding of mitochondrial disorders and population interpretations using mtDNA data
CO near the Pleiades: Encounter of a star cluster with a small molecular cloud
Although there is a large amount of interstellar matter near the Pleiades star cluster, the observed dust and gas is not a remnant of the placental molecular cloud from which the star cluster was formed. Carbon monoxide (CO) associated with the visible reflection nebulae was discovered by Cohen (1975). Its radial velocity differs from that of the cluster by many times the cluster escape velocity, which implies that the cloud-cluster association is the result of a chance encounter. This circumstance and the proximity of the Pleiades to the sun creates an unique opportunity for study of interstellar processes at high spatial resolution. To study the molecular component of the gas, a 1.7 square degree field was mapped with the AT&T Bell Laboratories 7-meter antenna (1.7' beam) on a 1' grid in the J=1.0 C(12)O line, obtaining over 6,000 spectra with 50 kHz resolution. The cloud core was mapped in the J=1-0 line of C(13)O. Further observations include an unsuccessful search for CS (J=2-1) at AT&T BL, and some C(12)O J=2-1 spectra obtained at the Millimeter Wave Observatory of the University of Texas
Space Applications of Solid State Luminescent Phenomena
Luminescent phenomena in interplanetary space and moon related to luminescent, thermoluminescent, and cathodoluminescent properties of terrestrial minerals and rock
Recent Progress Towards Predicting Aircraft Ground Handling Performance
The significant progress which has been achieved in development of aircraft ground handling simulation capability is reviewed and additional improvements in software modeling identified. The problem associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior is discussed and efforts to improve this complex model, and hence simulator fidelity, are described. Aircraft braking performance data obtained on several wet runway surfaces is compared to ground vehicle friction measurements and, by use of empirically derived methods, good agreement between actual and estimated aircraft braking friction from ground vehilce data is shown. The performance of a relatively new friction measuring device, the friction tester, showed great promise in providing data applicable to aircraft friction performance. Additional research efforts to improve methods of predicting tire friction performance are discussed including use of an instrumented tire test vehicle to expand the tire friction data bank and a study of surface texture measurement techniques
Non-isothermal X-ray Emitting Gas in Clusters of Galaxies
We have analyzed X-ray spectra from six galaxy clusters which contain cooling
flows: A85, A478, A1795, A2142, A2147, & A2199. The X-ray spectra were taken
with the HEAO1-A2 Medium and High Energy Detectors and the Einstein Solid State
Spectrometer. For each cluster, we simultaneously fit the spectra from these
three detectors with models incorporating one or more emission components
comprised of either thermal or cooling flow models. Five of the clusters (all
but A2142) are better fit by a multi-component model (a cooling flow plus one
or two thermal components or a two thermal component model) than by isothermal
models. In four of the clusters (A85, A1795, A2147, & A2199), we find evidence
for cool gas outside of the canonical cooling flow region. These latter four
clusters can be characterized by three temperature components: a temperature
inversion in the central region, a hotter region with an emission-weighted
temperature which is higher than that of an isothermal model fit to the entire
cluster, and a cooler region with an emission-weighted temperature of ~1 keV.
The cool component outside the cooling flow region has a large minimum emission
measure which we attribute, in part, to diffuse cool gas in the outer cluster
atmosphere. If at least some of the cool exterior gas is virialized, this would
imply a radially decreasing temperature profile. Together with the density
profiles we have found, this leads to a baryon fraction in gas which increases
with radius and is larger than that for an isothermal cluster atmosphere.
Consequently, if clusters of galaxies trace the mass distribution in the
Universe, the gas mass fraction we have calculated for an isothermal gas (which
is ~15%) together with the nominal galaxy contribution (~5%) gives a baryon
fraction of ~20%. Using the upper limit to the baryon density derived from BigComment: gzipped tar file of 26 PostScript pages, including 2 figures, 7
tables. Also available at
http://www.astr.ua.edu/preprints/white/INDEX_READ_ME_1st.htm
Linking individual behaviour to community scale patterns in fungi
The fungi comprise a separate kingdom of life and epitomise the indeterminate growth form. Very little is known about the factors that influence the nature of fungal diversity and the link between individual behaviour and the structure and function of fungal communities is particularly poorly understood. Here, we present a theoretical framework that is capable of elucidating this link. An individual-based model for fungal community dynamics is introduced that has been developed from a physiologically based model for the fungal phenotype. The model is used to explore the role of individual interactions, the production of an external inhibitor field and the quality of the external environment on the structure and diversity of the resulting community. We show that traits relating to growth rate, autophagic behaviour and the production of inhibitors are key in influencing the success of a particular genotype in a community. The species richness increases with the amount of available resource. This is the first model of fungal community dynamics that introduces the concept of a biomass-based abundance distribution function that can be described by the log-normal form which typically corresponds to communities in equilibrium. The species abundance curve was stable to changes in the relative location of inocula, although the ranked abundance of the individuals was not. We present the first attempt to identify the traits that affect the form of that curve. Future studies should examine the role of environmental heterogeneity and spore dispersal
Energetics of Domain Walls in the 2D t-J model
Using the density matrix renormalization group, we calculate the energy of a
domain wall in the 2D t-J model as a function of the linear hole density
\rho_\ell, as well as the interaction energy between walls, for J/t=0.35. Based
on these results, we conclude that the ground state always has domain walls for
dopings 0 < x < 0.3. For x < 0.125, the system has (1,0) domain walls with
\rho_\ell ~ 0.5, while for 0.125 < x < 0.17, the system has a possibly
phase-separated mixture of walls with \rho_\ell ~ 0.5 and \rho_\ell =1. For x >
0.17, there are only walls with \rho_\ell =1. For \rho_\ell = 1, diagonal (1,1)
domain walls have very nearly the same energy as (1,0) domain walls.Comment: Several minor changes. Four pages, four encapsulated figure
X-ray Binaries and Globular Clusters in Elliptical Galaxies
The X-ray emission from normal elliptical galaxies has two major components:
soft emission from diffuse gas and harder emission from populations of
accreting (low-mass) stellar X-ray binaries (LMXB). If LMXB populations are
tied to the field stellar populations in galaxies, their total X-ray
luminosities should be proportional to the optical luminosities of galaxies.
However, recent ASCA and Chandra X-ray observations show that the global
luminosities of LMXB components in ellipticals exhibit significant scatter at a
given optical luminosity. This scatter may reflect a range of evolutionary
stages among LMXB populations in ellipticals of different ages. If so, the
ratio of the global LMXB X-ray luminosity to the galactic optical luminosity,
L_LMXB/L_opt, may be used to determine when the bulk of stars were formed in
individual ellipticals. To test this, we compare variations in L_LMXB/L_opt for
LMXB populations in ellipticals to optically-derived estimates of stellar ages
in the same galaxies. We find no correlation, implying that L_LMXB/L_opt
variations are not good age indicators for ellipticals. Alternatively, LMXBs
may be formed primarily in globular clusters (through stellar tidal
interactions), rather than in the stellar fields of galaxies. Since elliptical
galaxies exhibit a wide range of globular cluster populations for a given
galaxian luminosity, this may induce a dispersion in the LMXB populations of
ellipticals with similar optical luminosities. Indeed, we find that
L_LMXB/L_opt ratios for LMXB populations are strongly correlated with the
specific globular cluster frequencies in elliptical galaxies. This suggests
that most LMXBs were formed in globular clusters.Comment: 5 pages, emulateapj5 style, 2 embedded EPS figures, to appear in ApJ
Letter
- …