326 research outputs found

    Finite Temperature and Dynamical Properties of the Random Transverse-Field Ising Spin Chain

    Full text link
    We study numerically the paramagnetic phase of the spin-1/2 random transverse-field Ising chain, using a mapping to non-interacting fermions. We extend our earlier work, Phys. Rev. 53, 8486 (1996), to finite temperatures and to dynamical properties. Our results are consistent with the idea that there are ``Griffiths-McCoy'' singularities in the paramagnetic phase described by a continuously varying exponent z(δ)z(\delta), where δ\delta measures the deviation from criticality. There are some discrepancies between the values of z(δ)z(\delta) obtained from different quantities, but this may be due to corrections to scaling. The average on-site time dependent correlation function decays with a power law in the paramagnetic phase, namely τ1/z(δ)\tau^{-1/z(\delta)}, where τ\tau is imaginary time. However, the typical value decays with a stretched exponential behavior, exp(cτ1/μ)\exp(-c\tau^{1/\mu}), where μ\mu may be related to z(δ)z(\delta). We also obtain results for the full probability distribution of time dependent correlation functions at different points in the paramagnetic phase.Comment: 10 pages, 14 postscript files included. The discussion of the typical time dependent correlation function has been greatly expanded. Other papers of APY are available on-line at http://schubert.ucsc.edu/pete

    Short-Range Ising Spin Glass: Multifractal Properties

    Full text link
    The multifractal properties of the Edwards-Anderson order parameter of the short-range Ising spin glass model on d=3 diamond hierarchical lattices is studied via an exact recursion procedure. The profiles of the local order parameter are calculated and analysed within a range of temperatures close to the critical point with four symmetric distributions of the coupling constants (Gaussian, Bimodal, Uniform and Exponential). Unlike the pure case, the multifractal analysis of these profiles reveals that a large spectrum of the α\alpha -H\"older exponent is required to describe the singularities of the measure defined by the normalized local order parameter, at and below the critical point. Minor changes in these spectra are observed for distinct initial distributions of coupling constants, suggesting an universal spectra behavior. For temperatures slightly above T_{c}, a dramatic change in the F(α)F(\alpha) function is found, signalizing the transition.Comment: 8 pages, LaTex, PostScript-figures included but also available upon request. To be published in Physical Review E (01/March 97

    Quantum Spin Glasses

    Full text link
    Ising spin glasses in a transverse field exhibit a zero temperature quantum phase transition, which is driven by quantum rather than thermal fluctuations. They constitute a universality class that is significantly different from the classical, thermal phase transitions. Most interestingly close to the transition in finite dimensions a quantum Griffiths phase leads to drastic consequences for various physical quantities: for instance diverging magnetic susceptibilities are observable over a whole range of transverse field values in the disordered phase.Comment: 10 pages LaTeX (Springer Lecture Notes style file included), 1 eps-figure; Review article for XIV Sitges Conference: Complex Behavior of Glassy System

    Properties of the random field Ising model in a transverse magnetic field

    Full text link
    We consider the effect of a random longitudinal field on the Ising model in a transverse magnetic field. For spatial dimension d>2d > 2, there is at low strength of randomness and transverse field, a phase with true long range order which is destroyed at higher values of the randomness or transverse field. The properties of the quantum phase transition at zero temperature are controlled by a fixed point with no quantum fluctuations. This fixed point also controls the classical finite temperature phase transition in this model. Many critical properties of the quantum transition are therefore identical to those of the classical transition. In particular, we argue that the dynamical scaling is activated, i.e, the logarithm of the diverging time scale rises as a power of the diverging length scale

    Domain Wall Renormalization Group Study of XY Model with Quenched Random Phase Shifts

    Full text link
    The XY model with quenched random disorder is studied by a zero temperature domain wall renormalization group method in 2D and 3D. Instead of the usual phase representation we use the charge (vortex) representation to compute the domain wall, or defect, energy. For the gauge glass corresponding to the maximum disorder we reconfirm earlier predictions that there is no ordered phase in 2D but an ordered phase can exist in 3D at low temperature. However, our simulations yield spin stiffness exponents θs0.36\theta_{s} \approx -0.36 in 2D and θs+0.31\theta_{s} \approx +0.31 in 3D, which are considerably larger than previous estimates and strongly suggest that the lower critical dimension is less than three. For the ±J\pm J XY spin glass in 3D, we obtain a spin stiffness exponent θs+0.10\theta_{s} \approx +0.10 which supports the existence of spin glass order at finite temperature in contrast with previous estimates which obtain θs<0\theta_{s}< 0. Our method also allows us to study renormalization group flows of both the coupling constant and the disorder strength with length scale LL. Our results are consistent with recent analytic and numerical studies suggesting the absence of a re-entrant transition in 2D at low temperature. Some possible consequences and connections with real vortex systems are discussed.Comment: 14 pages, 9 figures, revtex

    Random quantum magnets with long-range correlated disorder: Enhancement of critical and Griffiths-McCoy singularities

    Full text link
    We study the effect of spatial correlations in the quenched disorder on random quantum magnets at and near a quantum critical point. In the random transverse field Ising systems disorder correlations that decay algebraically with an exponent rho change the universality class of the transition for small enough rho and the off-critical Griffiths-McCoy singularities are enhanced. We present exact results for 1d utilizing a mapping to fractional Brownian motion and generalize the predictions for the critical exponents and the generalized dynamical exponent in the Griffiths phase to d>=2.Comment: 4 pages RevTeX, 1 eps-figure include

    Griffiths-McCoy Singularities in the Random Transverse-Field Ising Spin Chain

    Full text link
    We consider the paramagnetic phase of the random transverse-field Ising spin chain and study the dynamical properties by numerical methods and scaling considerations. We extend our previous work [Phys. Rev. B 57, 11404 (1998)] to new quantities, such as the non-linear susceptibility, higher excitations and the energy-density autocorrelation function. We show that in the Griffiths phase all the above quantities exhibit power-law singularities and the corresponding critical exponents, which vary with the distance from the critical point, can be related to the dynamical exponent z, the latter being the positive root of [(J/h)^{1/z}]_av=1. Particularly, whereas the average spin autocorrelation function in imaginary time decays as [G]_av(t)~t^{-1/z}, the average energy-density autocorrelations decay with another exponent as [G^e]_av(t)~t^{-2-1/z}.Comment: 8 pages RevTeX, 8 eps-figures include

    The metastate approach to thermodynamic chaos

    Full text link
    In realistic disordered systems, such as the Edwards-Anderson (EA) spin glass, no order parameter, such as the Parisi overlap distribution, can be both translation-invariant and non-self-averaging. The standard mean-field picture of the EA spin glass phase can therefore not be valid in any dimension and at any temperature. Further analysis shows that, in general, when systems have many competing (pure) thermodynamic states, a single state which is a mixture of many of them (as in the standard mean-field picture) contains insufficient information to reveal the full thermodynamic structure. We propose a different approach, in which an appropriate thermodynamic description of such a system is instead based on a metastate, which is an ensemble of (possibly mixed) thermodynamic states. This approach, modelled on chaotic dynamical systems, is needed when chaotic size dependence (of finite volume correlations) is present. Here replicas arise in a natural way, when a metastate is specified by its (meta)correlations. The metastate approach explains, connects, and unifies such concepts as replica symmetry breaking, chaotic size dependence and replica non-independence. Furthermore, it replaces the older idea of non-self-averaging as dependence on the bulk couplings with the concept of dependence on the state within the metastate at fixed coupling realization. We use these ideas to classify possible metastates for the EA model, and discuss two scenarios introduced by us earlier --- a nonstandard mean-field picture and a picture intermediate between that and the usual scaling/droplet picture.Comment: LaTeX file, 49 page

    Non-Fermi liquid behavior and Griffiths phase in {\it f}-electron compounds

    Full text link
    We study the interplay among disorder, RKKY and Kondo interactions in {\it f}-electron alloys. We argue that the non-Fermi liquid behavior observed in these systems is due to the existence of a Griffiths phase close to a quantum critical point. The existence of this phase provides a unified picture of a large class of materials. We also propose new experiments that can test these ideas.Comment: 4 pages, 1 Figure. NEW version of the original manuscript. A single framework for NFL behavior in different kinds of alloys is presented. Final version finally allowed to appear on the glorious Physical Review Letter

    Organizational and Supervisory Apology Effectiveness: Apology Giving in Work Settings

    Get PDF
    We synthesize the interdisciplinary literature into a heuristic for crafting effective organizational and supervisory apologies (the OOPS four-component apology). In the first experiment, we demonstrate how an offense committed by an organization is perceived to be more egregious than an offense committed by a friend or supervisor. Furthermore, results did not support that OOPS apologies are unequally effective if issued by a friend, supervisor, or organization. In the second experiment, we test OOPS apology-training effectiveness. Results indicated that trained participants crafted more effective apologies. Our apology heuristic is an innovation for training business communicators how to apologize effectively.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
    corecore