210 research outputs found

    Role of CuO chains in vortex core structure in YBa2Cu3O{7-delta}

    Full text link
    The Bogoliubov-deGennes equations are solved for a proximity model for YBa_2Cu_3O_{7-\delta} in a magnetic field. The model explicitly includes the effects of the one-dimensional CuO chains, whose influence on the vortex core structure is studied. The rapid vortex core contraction as a function of field which is seen experimentally at low magnetic fields is naturally explained by the presence of the chains.Comment: 9 pages, 5 figure

    High-field muSR studies of superconducting and magnetic correlations in cuprates above Tc

    Full text link
    The advent of high transverse-field muon spin rotation (TF-muSR) has led to recent muSR investigations of the magnetic-field response of cuprates above the superconducting transition temperature T_c. Here the results of such experiments on hole-doped cuprates are reviewed. Although these investigations are currently ongoing, it is clear that the effects of high field on the internal magnetic field distribution of these materials is dependent upon a competition between superconductivity and magnetism. In La_{2-x}Sr_xCuO_4 the response to the external field above Tc is dominated by heterogeneous spin magnetism. However, the magnetism that dominates the observed inhomogeneous line broadening below x ~ 0.19 is overwhelmed by the emergence of a completely different kind of magnetism in the heavily overdoped regime. The origin of the magnetism above x ~ 0.19 is currently unknown, but its presence hints at a competition between superconductivity and magnetism that is reminiscent of the underdoped regime. In contrast, the width of the internal field distribution of underdoped YBa_2Cu_3O_y above Tc is observed to track Tc and the density of superconducting carriers. This observation suggests that the magnetic response above Tc is not dominated by electronic moments, but rather inhomogeneous fluctuating superconductivity.Comment: 28 pages, 11 figures, 104 reference

    Evidence for Static Magnetism in the Vortex Cores of Ortho-II YBa2_2Cu3_3O6.50_{6.50}

    Full text link
    Evidence for static alternating magnetic fields in the vortex cores of underdoped YBa2_2Cu3_3O6+x_{6+x} is reported. Muon spin rotation measurements of the internal magnetic field distribution of the vortex state of YBa2_2Cu3_3O6.50_{6.50} in applied fields of H=1H = 1 T and H=4H = 4 T reveal a feature in the high-field tail of the field distribution which is not present in optimally doped YBa2_2Cu3_3O6.95_{6.95} and which fits well to a model with static magnetic fields in the vortex cores. The magnitude of the fields is estimated to be 18(2) G and decreases above T=10T = 10 K. We discuss possible origins of the additional vortex core magnetism within the context of existing theories.Comment: Submitted to PRL; corresponding author: [email protected]

    Abrikosov flux-lines in two-band superconductors with mixed dimensionality

    Full text link
    We study vortex structure in a two-band superconductor, in which one band is ballistic and quasi-two-dimensional (2D), and the other is diffusive and three-dimensional (3D). A circular cell approximation of the vortex lattice within the quasiclassical theory of superconductivity is applied to a recently developed model appropriate for such a two-band system [Tanaka et al 2006 Phys. Rev. B 73, 220501(R); Tanaka et al 2007 Phys. Rev. B 75, 214512]. We assume that superconductivity in the 3D diffusive band is "weak", i.e., mostly induced, as is the case in MgB2_2. Hybridization with the "weak" 3D diffusive band has significant and intriguing influence on the electronic structure of the "strong" 2D ballistic band. In particular, the Coulomb repulsion and the diffusivity in the "weak" band enhance suppression of the order parameter and enlargement of the vortex core by magnetic field in the "strong" band, resulting in reduced critical temperature and field. Moreover, increased diffusivity in the "weak" band can result in an upward curvature of the upper critical field near the transition temperature. A particularly interesting feature found in our model is the appearance of additional bound states at the gap edge in the "strong" ballistic band, which are absent in the single-band case. Furthermore, coupling with the "weak" diffusive band leads to reduced band gaps and van Hove singularities of energy bands of the vortex lattice in the "strong" ballistic band. We find these intriguing features for parameter values appropriate for MgB2_2.Comment: 11 pages, 14 figure
    • …
    corecore