103 research outputs found

    Au Fe vs Cu thermocouples

    Get PDF
    A calibration of gold iron thermocouples is given

    Superconductivity in Dense MgB2MgB_2 Wires

    Get PDF
    MgB2MgB_2 becomes superconducting just below 40 K. Whereas porous polycrystalline samples of MgB2MgB_2 can be synthesized from boron powders, in this letter we demonstrate that dense wires of MgB2MgB_2 can be prepared by exposing boron filaments to MgMg vapor. The resulting wires have a diameter of 160 μm{\mu}m, are better than 80% dense and manifest the full χ=1/4π\chi = -1/4{\pi} shielding in the superconducting state. Temperature-dependent resistivity measurements indicate that MgB2MgB_2 is a highly conducting metal in the normal state with ρ(40K)\rho (40 K) = 0.38 μOhm\mu Ohm-cmcm. Using this value, an electronic mean free path, l600 A˚l \approx 600~\AA can be estimated, indicating that MgB2MgB_2 wires are well within the clean limit. TcT_c, Hc2(T)H_{c2}(T), and JcJ_c data indicate that MgB2MgB_2 manifests comparable or better superconducting properties in dense wire form than it manifests as a sintered pellet.Comment: Figures' layout fixe

    Competition Between Stripes and Pairing in a t-t'-J Model

    Full text link
    As the number of legs n of an n-leg, t-J ladder increases, density matrix renormalization group calculations have shown that the doped state tends to be characterized by a static array of domain walls and that pairing correlations are suppressed. Here we present results for a t-t'-J model in which a diagonal, single particle, next-near-neighbor hopping t' is introduced. We find that this can suppress the formation of stripes and, for t' positive, enhance the d_{x^2-y^2}-like pairing correlations. The effect of t' > 0 is to cause the stripes to evaporate into pairs and for t' < 0 to evaporate into quasi-particles. Results for n=4 and 6-leg ladders are discussed.Comment: Four pages, four encapsulated figure

    Charge Segregation, Cluster Spin-Glass and Superconductivity in La1.94Sr0.06CuO4

    Full text link
    A 63Cu and 139La NMR/NQR study of superconducting (Tc=7 K) La1.94Sr0.06CuO4 single crystal is reported. Coexistence of spin-glass and superconducting phases is found below ~5 K from 139La NMR relaxation. 63Cu and 139La NMR spectra show that, upon cooling, CuO2 planes progressively separate into two magnetic phases, one of them having enhanced antiferromagnetic correlations. These results establish the AF-cluster nature of the spin-glass. We discuss how this phase can be related to the microsegregation of mobile holes and to the possible pinning of charge-stripes.Comment: 4 pages. Modified manuscript with clarification

    Local Magnetic Order vs. Superconductivity in a Layered Cuprate

    Full text link
    We report on the phase diagram for charge-stripe order in La(1.6-x)Nd(0.4)Sr(x)CuO(4), determined by neutron and x-ray scattering studies and resistivity measurements. From an analysis of the in-plane resistivity motivated by recent nuclear-quadrupole-resonance studies, we conclude that the transition temperature for local charge ordering decreases monotonically with x, and hence that local antiferromagnetic order is uniquely correlated with the anomalous depression of superconductivity at x = 1/8. This result is consistent with theories in which superconductivity depends on the existence of charge-stripe correlations.Comment: 4 pages, 4 figures; introduction revised, Fig. 3 removed, last figure replace

    Differential Glucose-Regulation of MicroRNAs in Pancreatic Islets of Non-Obese Type 2 Diabetes Model Goto-Kakizaki Rat

    Get PDF
    The Goto-Kakizaki (GK) rat is a well-studied non-obese spontaneous type 2 diabetes (T2D) animal model characterized by impaired glucose-stimulated insulin secretion (GSIS) in the pancreatic beta cells. MicroRNAs (miRNAs) are short regulatory RNAs involved in many fundamental biological processes. We aim to identify miRNAs that are differentially-expressed in the pancreatic islets of the GK rats and investigate both their short- and long term glucose-dependence during glucose-stimulatory conditions

    Effect of a magnetic field on the spin- and charge-density wave order in La1.45Nd0.4Sr0.15CuO4

    Full text link
    The spin-density wave (SDW) and charge-density wave (CDW) order in superconducting La1.45Nd0.4Sr0.15CuO4 were studied under an applied magnetic field using neutron and X-ray diffraction techniques. In zero field, incommensurate (IC) SDW order appears below ~ 40 K, which is characterized by neutron diffraction peaks at (1/2 +/- 0.134, 1/2 +/- 0.134, 0). The intensity of these IC peaks increases rapidly below T_Nd ~ 8 K due to an ordering of the Nd^3+ spins. The application of a 1 T magnetic field parallel to the c-axis markedly diminishes the intensity below T_Nd, while only a slight decrease in intensity is observed at higher temperatures for fields up to 7 T. Our interpretation is that the c-axis field suppresses the parasitic Nd^3+ spin order at the incommensurate wave vector without disturbing the stripe order of Cu^2+ spins. Consistent with this picture, the CDW order, which appears below 60 K, shows no change for magnetic fields up to 4 T. These results stand in contrast to the significant field-induced enhancement of the SDW order observed in superconducting La2-xSrxCuO4 with x ~ 0.12 and stage-4 La2CuO4+y. The differences can be understood in terms of the relative volume fraction exhibiting stripe order in zero field, and the collective results are consistent with the idea that suppression of superconductivity by vortices nucleates local patches of stripe order.Comment: 7 pages, 5 figure

    Neutron Scattering Study of Spin Density Wave Order in the Superconducting State of Excess-Oxygen-Doped La2CuO4+y

    Full text link
    We report neutron scattering measurements of spin density wave order within the superconducting state of a single crystal of predominately stage-4 La2CuO4+y with a Tc(onset) of 42 K. The low temperature elastic magnetic scattering is incommensurate with the lattice and is characterized by long-range order in the copper-oxide plane with the spin direction identical to that in the insulator. Between neighboring planes, the spins exhibit short-range correlations with a stacking arrangement reminiscent of that in the undoped antiferromagnetic insulator. The elastic magnetic peak intensity appears at the same temperature within the errors as the superconductivity, suggesting that the two phenomena are strongly correlated. These observations directly reveal the persistent influence of the antiferromagnetic order as the doping level increases from the insulator to the superconductor. In addition, our results confirm that spin density wave order for incommensurabilities near 1/8 is a robust feature of the La2CuO4-based superconductors.Comment: 14 pages, LaTeX, includes 8 figure

    Pathogenesis of peroxisomal deficiency disorders (Zellweger syndrome) may be mediated by misregulation of the GABAergic system via the diazepam binding inhibitor

    Get PDF
    BACKGROUND: Zellweger syndrome (ZS) is a fatal inherited disease caused by peroxisome biogenesis deficiency. Patients are characterized by multiple disturbances of lipid metabolism, profound hypotonia and neonatal seizures, and distinct craniofacial malformations. Median live expectancy of ZS patients is less than one year. While the molecular basis of peroxisome biogenesis and metabolism is known in considerable detail, it is unclear how peroxisome deficiency leads to the most severe neurological symptoms. Recent analysis of ZS mouse models has all but invalidated previous hypotheses. HYPOTHESIS: We suggest that a regulatory rather than a metabolic defect is responsible for the drastic impairment of brain function in ZS patients. TESTING THE HYPOTHESIS: Using microarray analysis we identify diazepam binding inhibitor/acyl-CoA binding protein (DBI) as a candidate protein that might be involved in the pathogenic mechanism of ZS. DBI has a dual role as a neuropeptide antagonist of GABA(A) receptor signaling in the brain and as a regulator of lipid metabolism. Repression of DBI in ZS patients could result in an overactivation of GABAergic signaling, thus eventually leading to the characteristic hypotonia and seizures. The most important argument for a misregulation of GABA(A) in ZS is, however, provided by the striking similarity between ZS and "benzodiazepine embryofetopathy", a malformation syndrome observed after the abuse of GABA(A) agonists during pregnancy. IMPLICATIONS OF THE HYPOTHESIS: We present a tentative mechanistic model of the effect of DBI misregulation on neuronal function that could explain some of the aspects of the pathology of Zellweger syndrome
    corecore