77 research outputs found

    Trial of short-course antimicrobial therapy for intraabdominal infection

    Get PDF

    The role of cyclooxygenase-1 and cyclooxygenase-2 in lipopolysaccharide and interleukin-1 stimulated enterocyte prostanoid formation.

    Get PDF
    Lipopolysaccharide is an inflammatory agent and interleukin-1 is a cytokine. Their pro-inflammatory effects may be mediated by prostanoids produced by inducible cyclooxygenase-2. The aim of this study was to determine the prostanoids produced by lipopolysaccharide and interleukin-1 stimulated enterocytes through the cyclooxygenase-1 and 2 pathways. Cultured enterocytes were stimulated with lipopolysaccharide or interleukin-1beta with and without cyclooxygenase inhibitors. Low concentrations of indomethacin and valerylsalicylic acid (VSA) were evaluated as cyclooxygenase-1 inhibitors and their effects compared with the effects of a specific cyclooxygenase-2 inhibitor, SC-58125. Prostaglandin E2, 6-keto prostaglandin F1alpha, prostaglandin D2 and leukotriene B4 levels were determined by radioimmunoassay. Immunoblot analysis using isoform-specific antibodies showed that the inducible cyclooxygenase enzyme (COX-2) was expressed by 4 h in LPS and IL-1beta treated cells while the constitutive COX-1 remained unaltered in its expression. Interleukin-1beta and lipopolysaccharide stimulated the formation of all prostanoids compared with untreated cells, but failed to stimulate leukotriene B4. Indomethacin at 20 microM concentration, and VSA inhibited lipopolysaccharide and interleukin 1beta stimulated prostaglandin E2, but not 6-keto prostaglandin F1alpha formation. SC-58125 inhibited lipopolysaccharide and interleukin-1beta stimulated 6-keto prostaglandin F1alpha but not prostaglandin E2 release. The specific cyclooxygenase-2 inhibitor also inhibited lipopolysaccharide produced prostaglandin D2 but not interleukin-1beta stimulated prostaglandin D2. While SC-58125 inhibited basal 6-keto prostaglandin-F1alpha formation it significantly increased basal prostaglandin E2 and prostaglandin D2 formation. As SC-58125 inhibited lipopolysaccharide and interleukin-1beta induced 6-keto prostaglandin F1alpha production but not prostaglandin E2 production, it suggests that these agents stimulate prostacyclin production through a cyclooxygenase-2 mediated mechanism and prostaglandin E2 production occurs through a cyclooxygenase-1 mediated mechanism. Prostaglandin D2 production appeared to be variably produced by cyclooxygenase-1 or cyclooxygenase-2, depending on the stimulus

    The effect of an interleukin receptor antagonist (IL-1ra) on colonocyte eicosanoid release

    Get PDF
    We investigated whether an interleukin 1 receptor antagonist (IL-1ra) altered cellular release of prostanoids and leukotrienes in a transformed colonic cell line (CACO-2) in the presence of proinflammatory stimuli. Cellular inflammation was induced by treatment with lipopolysaccharide (LPS) or the cytokine, interleukin 1 beta (IL-1β). In a separate set of experiments, cells were pretreated with IL-1ra prior to exposure to LPS or IL-1β. Prostaglandin E2 and leukotriene B4 (LTB4) levels were quantified by ELISA assays. Both LPS and IL-1β exposure were noted to stimulate cellular PGE2 release, a response which was significantly inhibited by IL-1ra treatment. Either stimulant when administered alone failed to stimulate release of LTB4. When administered after IL-1ra pretreatment however, both stimuli caused a significant increase in LTB4 release. These results suggest that a cytokine receptor antagonist can selectively influence eicosanoid production in this cell line. Furthermore, this study suggests that a IL-1ra may have a future clinical role in the treatment of inflammatory disorders of the colon which are intimately linked to enhanced eicosanoid synthesis

    Human intestinal epithelial and smooth muscle cells are potent producers of IL-6.

    Get PDF
    BACKGROUND: Interleukin-6 (IL-6), a pluripotent cytokine, has traditionally been considered the product of proinflammatory cells. However, many other cell types have been shown to produce IL-6. Since intestinal inflammation is commonly associated with a vigorous systemic inflammatory response, we hypothesized that intestinal epithelial and smooth muscle cells might contribute to that response by producing IL-6. We therefore studied the capacity of differentiated human intestinal epithelial and smooth muscle cell lines to produce IL-6 in response to various proinflammatory stimuli. MATERIALS AND METHODS: CCL-241, a human intestinal epithelial cell line, and HISM, a human intestinal muscle cell line, were grown to confluency and then treated for 24 h with various concentrations of lipopolysaccharide, Clostridium difficile culture extract containing both toxin A and toxin B, recombinant human tumor necrosis factor-alpha (TNF-alpha), or recombinant human interleukin-1 beta (IL-1beta). Supernatants were then collected for IL-6 determination using an enzyme-linked immunosorbent assay. Cell numbers were determined using a Coulter counter. For comparison, parallel studies were performed using phorbol ester-primed U-937 and THP-1 human macrophage cell lines. RESULTS: Both human intestinal epithelial and smooth muscle cells produced IL-6 under basal conditions. In HISM cells, but not in CCL-241 cells, IL-6 release was increased slightly by treatment with C. difficile culture extract containing both toxin A and toxin B and with lipopolysaccharide. In both cell lines, IL-6 production was profoundly stimulated by treatment with IL-1beta and less so with TNF-alpha. Combinations of high-dose TNF-alpha and IL-1beta may have a slightly additive, but not synergistic, effect on IL-6 release. The amount of IL-6 produced by IL-1-stimulated intestinal cell lines was 70-fold higher than that produced by stimulated macrophage cell lines. CONCLUSIONS; Both intestinal epithelial and smooth muscle cells demonstrate the ability to release significant amounts of IL-6. The profound response to IL-1beta and TNF-alpha stimulation by both cell lines suggests that human intestinal parenchymal cells, influenced by paracrine mediators liberated from proinflammatory cells, might significantly contribute to the overall systemic inflammatory response by producing IL-6

    The Surgical Infection Society revised guidelines on the management of intra-abdominal infection

    Get PDF
    Background: Previous evidence-based guidelines on the management of intra-abdominal infection (IAI) were published by the Surgical Infection Society (SIS) in 1992, 2002, and 2010. At the time the most recent guideline was released, the plan was to update the guideline every five years to ensure the timeliness and appropriateness of the recommendations. Methods: Based on the previous guidelines, the task force outlined a number of topics related to the treatment of patients with IAI and then developed key questions on these various topics. All questions were approached using general and specific literature searches, focusing on articles and other information published since 2008. These publications and additional materials published before 2008 were reviewed by the task force as a whole or by individual subgroups as to relevance to individual questions. Recommendations were developed by a process of iterative consensus, with all task force members voting to accept or reject each recommendation. Grading was based on the GRADE (Grades of Recommendation Assessment, Development, and Evaluation) system; the quality of the evidence was graded as high, moderate, or weak, and the strength of the recommendation was graded as strong or weak. Review of the document was performed by members of the SIS who were not on the task force. After responses were made to all critiques, the document was approved as an official guideline of the SIS by the Executive Council. Results: This guideline summarizes the current recommendations developed by the task force on the treatment of patients who have IAI. Evidence-based recommendations have been made regarding risk assessment in individual patients; source control; the timing, selection, and duration of antimicrobial therapy; and suggested approaches to patients who fail initial therapy. Additional recommendations related to the treatment of pediatric patients with IAI have been included. Summary: The current recommendations of the SIS regarding the treatment of patients with IAI are provided in this guideline
    corecore