6,839 research outputs found

    Global Plate Motions and Earthquake Cycle Effects

    Get PDF
    The rotations of tectonic plates provide a partial description of the total observed displacements at the Earthā€™s surface. The estimated number of kinematically distinct plates has increased from 12 in 1990 to 56 in 2010 as a result of the increase in the number of kinematic observables. At length scales \u3c1,000 km, rotation-only plate models are inaccurate because geodetic signals of long-term plate motions are complicated by earthquake cycle effects. Here we present results from a global block model that unifies large-scale plate motions and local earthquake cycle effects at plate boundaries. Incorporating the rotations of 307 distinct plates, elastic strain accumulation from 16 subduction zones and 1.59Ɨ107 km2 of fault system area, this model explains 19,664 interseismic GPS velocities at a resolution of 2.2 mm/year. Geodetically constrained fault slip deficit rates yield a cumulative global moment accumulation rate of 1.09 Ɨ 1022 Nā‹…m/year, 12% larger than the average annual coseismic moment release rate from 1900 to 2013. The potential contribution to the total moment rate budget can be estimated from the frequency distribution of the modeled fault slip-deficit rates, which follow an exponential distribution. Integrating this frequency distribution over all possible slip rates indicates that the geologic structures included in this reference global block model account for 98% of the global moment budget. Comparing our results with population distribution, we find that āˆ¼50% of the worldā€™s population lives within 200 km of an active fault with a slip rate \u3e2 mm/year

    A Global Set of Subduction Zone Earthquake Scenarios and Recurrence Intervals Inferred From Geodetically Constrained Block Models of Interseismic Coupling Distributions

    Get PDF
    The past 100 years have seen the occurrence of five (Formula presented.) earthquakes and 94 (Formula presented.) earthquakes. Here we assess the potential for future great earthquakes using inferences of interseismic subduction zone coupling from a global block model incorporating both tectonic plate motions and earthquake cycle effects. Interseismic earthquake cycle effects are represented using a first-order quasistatic elastic approximation and include (Formula presented.) of interacting fault system area across the globe. We use estimated spatial variations in decadal-duration coupling at 15 subduction zones and the Himalayan range front to estimate the locations and magnitudes of potential seismic events using empirical scaling relationships relating coupled area to moment magnitude. As threshold coupling values increase, estimates of potential earthquake magnitudes decrease, but the total number of large earthquakes varies non-monotonically. These rupture scenarios include as many as 14 recent or potential (Formula presented.) earthquakes globally and up to 18 distinct (Formula presented.) events associated with a single subduction zone (South America). We also combine estimated slip deficit rates and potential event magnitudes to calculate recurrence intervals for large earthquake scenarios, finding that almost all potential earthquakes would have a recurrence time of less than 1,000 years

    Characterising the vertical separation of shale-gas source rocks and aquifers across England and Wales (UK)

    Get PDF
    Shale gas is considered by many to have the potential to provide the UK with greater energy security, economic growth and jobs. However, development of a shale gas industry is highly contentious due to environmental concerns including the risk of groundwater pollution. Evidence suggests that the vertical separation between exploited shale units and aquifers is an important factor in the risk to groundwater from shale gas exploitation. A methodology is presented to assess the vertical separation between different pairs of aquifers and shales that are present across England and Wales. The application of the method is then demonstrated for two of these pairsā€”the Cretaceous Chalk Group aquifer and the Upper Jurassic Kimmeridge Clay Formation, and the Triassic sandstone aquifer and the Carboniferous Bowland Shale Formation. Challenges in defining what might be considered criteria for ā€˜safe separationā€™ between a shale gas formation and an overlying aquifer are discussed, in particular with respect to uncertainties in geological properties, aquifer extents and determination of socially acceptable risk levels. Modelled vertical separations suggest that the risk of aquifer contamination from shale exploration will vary greatly between shaleā€“aquifer pairs and between regions and this will need to be considered carefully as part of the risk assessment and management for any shale gas development

    Feasibility of isotope harvesting at a projectile fragmentation facility: ā¶ā·Cu

    Get PDF
    The work presented here describes a proof-of-principle experiment for the chemical extraction of (67)Cu from an aqueous beam stop at the National Superconducting Cyclotron Laboratory (NSCL). A 76 MeV/A (67)Cu beam was stopped in water, successfully isolated from the aqueous solution through a series of chemical separations involving a chelating disk and anion exchange chromatography, then bound to NOTA-conjugated Herceptin antibodies, and the bound activity was validated using instant thin-layer chromatography (ITLC). The chemical extraction efficiency was found to be 88 Ā± 3% and the radiochemical yield was ā‰„95%. These results show that extraction of radioisotopes from an aqueous projectile-fragment beam dump is a feasible method for obtaining radiochemically pure isotopes

    Status of the CMS magnet (MT17)

    Get PDF
    The CMS experiment (Compact Muon Solenoid) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with a free bore of 6 m diameter and 12.5-m length, enclosed inside a 10 000-ton return yoke. The magnet will be assembled and tested in a surface hall at Point 5 of the LHC at the beginning of 2004 before being transferred by heavy lifting means to an experimental hall 90 m below ground level. The design and construction of the magnet is a common project of the CMS Collaboration. The task is organized by a CERN based group with strong technical and contractual participation from CEA Saclay, ETH Zurich, Fermilab, INFN Genova, ITEP Moscow, University of Wisconsin and CERN. The magnet project will be described, with emphasis on the present status of the fabrication. (15 refs)

    Groundwater connectivity of a sheared gneiss aquifer in the Cauvery River basin, India

    Get PDF
    Connectivity of groundwater flow within crystalline-rock aquifers controls the sustainability of abstraction and baseflow to rivers, yet is often poorly constrained at a catchment scale. Here groundwater connectivity in a sheared gneiss aquifer is investigated by studying the intensively abstracted Berambadi catchment (84 km2) in the Cauvery River Basin, southern India, with geological characterisation, aquifer properties testing, hydrograph analysis, hydrochemical tracers and a numerical groundwater flow model. The study indicates a well-connected system, both laterally and vertically, that has evolved with high abstraction from a laterally to a vertically dominated flow system. Likely as a result of shearing, a high degree of lateral connectivity remains at low groundwater levels. Because of their low storage and logarithmic reduction in hydraulic conductivity with depth, crystalline-rock aquifers in environments such as this, with high abstraction and variable seasonal recharge, constitute a highly variable water resource, meaning farmers must adapt to varying water availability. Importantly, this study indicates that abstraction is reducing baseflow to the river, which, if also occurring in other similar catchments, will have implications downstream in the Cauvery River Basin

    Results from a Fermilab neutrino beam dump experiment

    Full text link
    The flux of prompt neutrinos from a beam dump has been measured in an experiment at the Fermi National Accelerator Laboratory (E613). Assuming that the charm production has a linear dependence on atomic number and varies as (1āˆ’ā€–Ć—ā€–)5 eāˆ’2mT, a model dependent cross section of 27Ā±5Ī¼b/nucleon can be derived. For neutrino energies greater than 20 GeV, the flux of electron neutrinos with respect to muon neutrinos is 0.78Ā±0.19. For neutrinos with energy greater than 30 GeV and pāŸ‚ greater than 0.2, the flux of Ī½Ģ„u compared to Ī½Ī¼ is 0.96Ā±0.22.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87363/2/100_1.pd

    Prompt Neutrino Results from Fermi Lab

    Full text link
    Results from a Fermi lab experiment to study prompt neutrino production are presented. Assuming the prompt neutrinos come from the decay of charmed mesons we find a total DD production cross section of approx. 20 Ī¼b/nucleon, in good agreement with previous CERN results. We find a Ī½/Ī½ ratio and a Ī½e/Ī½Ī¼ of approx. 1.0. The energy and pT spectra of the prompt neutrinos are consistent with those expected from DD production. Limits on the production of supersymmetric particles have also been obtained.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87356/2/262_1.pd
    • ā€¦
    corecore