1 research outputs found

    Elementary excitations, exchange interaction and spin-Peierls transition in CuGeO3_3

    Get PDF
    The microscopic description of the spin-Peierls transition in pure and doped CuGeO_3 is developed taking into account realistic details of crystal structure. It it shown that the presence of side-groups (here Ge) strongly influences superexchange along Cu-O-Cu path, making it antiferromagnetic. Nearest-neighbour and next-nearest neighbour exchange constants JnnJ_{nn} and JnnnJ_{nnn} are calculated. Si doping effectively segments the CuO_2-chains leading to Jnn(Si)≃0J_{nn}(Si)\simeq0 or even slightly ferromagnetic. Strong sensitivity of the exchange constants to Cu-O-Cu and (Cu-O-Cu)-Ge angles may be responsible for the spin-Peierls transition itself (``bond-bending mechanism'' of the transition). The nature of excitations in the isolated and coupled spin-Peierls chains is studied and it is shown that topological excitations (solitons) play crucial role. Such solitons appear in particular in doped systems (Cu_{1-x}Zn_xGeO_3, CuGe_{1-x}Si_xO_3) which can explain the TSP(x)T_{SP}(x) phase diagram.Comment: 7 pages, revtex, 7 Postscript figure
    corecore