143 research outputs found

    Cadherin-26 (CDH26) regulates airway epithelial cell cytoskeletal structure and polarity.

    Get PDF
    Polarization of the airway epithelial cells (AECs) in the airway lumen is critical to the proper function of the mucociliary escalator and maintenance of lung health, but the cellular requirements for polarization of AECs are poorly understood. Using human AECs and cell lines, we demonstrate that cadherin-26 (CDH26) is abundantly expressed in differentiated AECs, localizes to the cell apices near ciliary membranes, and has functional cadherin domains with homotypic binding. We find a unique and non-redundant role for CDH26, previously uncharacterized in AECs, in regulation of cell-cell contact and cell integrity through maintaining cytoskeletal structures. Overexpression of CDH26 in cells with a fibroblastoid phenotype increases contact inhibition and promotes monolayer formation and cortical actin structures. CDH26 expression is also important for localization of planar cell polarity proteins. Knockdown of CDH26 in AECs results in loss of cortical actin and disruption of CRB3 and other proteins associated with apical polarity. Together, our findings uncover previously unrecognized functions for CDH26 in the maintenance of actin cytoskeleton and apicobasal polarity of AECs

    Cooking Particulate Matter: A Systematic Review on Nanoparticle Exposure in the Indoor Cooking Environment

    Get PDF
    Background: Cooking and fuel combustion in the indoor environment are major sources of respirable suspended particulate matter (RSPM), which is an excellent carrier of potentially harmful absorbed inorganic and organic compounds. Chronic exposure to RSPM can lead to acute pulmonary illness, asthma, cardiovascular disease, and lung cancer in people involved in cooking. Despite this, questions remain about the harmfulness of different particulate matter (PM) sources generated during cooking, and the factors influencing PM physico-chemical properties. The most reliable methods for sampling and analyzing cooking emissions remain only partially understood. Objectives: This review aims to comprehensively assess the risks of PM generated during cooking, considering the main sources of PM, PM chemical composition, and strategies for PM physico-chemical analysis. We present the first systematic analysis of PM sources and chemical composition related to cooking. We highlight significant differences between studies using different experimental conditions, with a lack of a standard methodology. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement rules and the Patient, Intervention, Comparison, and Outcome (PICO) strategy for scientific research, three different scientific databases (PubMed, Scopus, and Web of Science) were screened to find scientific articles that measure, collect, and analyze the chemical composition of nanometer-and micrometer-sized PM generated during cooking activities under different conditions. Data are summarized to assess risk, evaluating the main sources and factors influencing PM generation, their chemical composition, and how they have been collected and analyzed in changing experimental conditions. Results: From 2474 search results, there were 55 studies that met our criteria. Overall, the main variable sources of PM in cooking activities relate to the stove and fuel type. The concentration and chemical–physical properties of PM are also strongly influenced by the food and food additive type, food processing type, cooking duration, temperature, and utensils. The most important factor influencing indoor PM concentration is ventilation. The PM generated during cooking activities is composed mainly of elemental carbon (EC) and its derivatives, and the porous structure of PM with high surface-to-volume ratio is a perfect carrier of inorganic and organic matter. Conclusions: This review reveals a growing interest in PM exposure during cooking activities and highlights significant variability in the chemical–physical properties of particles, and thus variable exposure risks. Precise risk characterization improves possible preventive strategies to reduce the risk of indoor pollutant exposure. However, comprehensive PM analysis needs proper sampling and analysis methods which consider all factors influencing the physico-chemical properties of PM in an additive and synergistic way. Our analysis highlights the need for method standardization in PM environmental analyses, to ensure accuracy and allow deeper comparisons between future studies

    A pilot study of occupational exposure to ultrafine particles during 3D printing in research laboratories

    Get PDF
    Introduction3D printing is increasingly present in research environments, and could pose health risks to users due to air pollution and particulate emissions. We evaluated the nanoparticulate emissions of two different 3D printers, utilizing either fused filament fabrication with polylactic acid, or stereolithography (SLA) with light curing resin. MethodsNanoparticulate emissions were evaluated in two different research environments, both by environmental measurements in the laboratory and by personal sampling. ResultsThe SLA printer had higher nanoparticulate emissions, with an average concentration of 4,091 parts/cm(3), versus 2,203 particles/cm(3) for the fused filament fabrication printer. The collected particulate matter had variable morphology and elemental composition with a preponderance of carbon, sulfur and oxygen, the main byproducts. DiscussionOur study implies that when considering the health risks of particulate emissions from 3D printing in research laboratories, attention should be given to the materials used and the type of 3D printer

    Quasi-Periodic Pulsations in Solar Flares: new clues from the Fermi Gamma-Ray Burst Monitor

    Full text link
    In the last four decades it has been observed that solar flares show quasi-periodic pulsations (QPPs) from the lowest, i.e. radio, to the highest, i.e. gamma-ray, part of the electromagnetic spectrum. To this day, it is still unclear which mechanism creates such QPPs. In this paper, we analyze four bright solar flares which show compelling signatures of quasi-periodic behavior and were observed with the Gamma-Ray Burst Monitor (\gbm) onboard the Fermi satellite. Because GBM covers over 3 decades in energy (8 keV to 40 MeV) it can be a key instrument to understand the physical processes which drive solar flares. We tested for periodicity in the time series of the solar flares observed by GBM by applying a classical periodogram analysis. However, contrary to previous authors, we did not detrend the raw light curve before creating the power spectral density spectrum (PSD). To assess the significance of the frequencies we made use of a method which is commonly applied for X-ray binaries and Seyfert galaxies. This technique takes into account the underlying continuum of the PSD which for all of these sources has a P(f) ~ f^{-\alpha} dependence and is typically labeled red-noise. We checked the reliability of this technique by applying it to a solar flare which was observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) which contains, besides any potential periodicity from the Sun, a 4 s rotational period due to the rotation of the spacecraft around its axis. While we do not find an intrinsic solar quasi-periodic pulsation we do reproduce the instrumental periodicity. Moreover, with the method adopted here, we do not detect significant QPPs in the four bright solar flares observed by GBM. We stress that for the purpose of such kind of analyses it is of uttermost importance to appropriately account for the red-noise component in the PSD of these astrophysical sources.Comment: accepted by A&

    A weak compact jet in a soft state of Cygnus X-1

    Get PDF
    We present evidence for the presence of a weak compact jet during a soft X-ray state of Cygnus X-1. Very-high-resolution radio observations were taken with the VLBA, EVN and MERLIN during a hard-to-soft spectral state change, showing the hard state jet to be suppressed by a factor of about 3-5 in radio flux and unresolved to direct imaging observations (i.e. < 1 mas at 4 cm). High time-resolution X-ray observations with the RXTE-PCA were also taken during the radio monitoring period, showing the source to make the transition from the hard state to a softer state (via an intermediate state), although the source may never have reached the canonical soft state. Using astrometric VLBI analysis and removing proper motion, parallax and orbital motion signatures, the residual positions show a scatter of ~0.2 mas (at 4 cm) and ~3 mas (at 13 cm) along the position angle of the known jet axis; these residuals suggest there is a weak unresolved outflow, with varying size or opacity, during intermediate and soft X-ray states. Furthermore, no evidence was found for extended knots or shocks forming within the jet during the state transition, suggesting the change in outflow rate may not be sufficiently high to produce superluminal knots.Comment: Accepted in MNRAS; 4 figures and 1 tabl

    Toward the renal vesicle: Ultrastructural investigation of the cap mesenchyme splitting process in the developing kidney

    Get PDF
    Background: A complex sequence of morphogenetic events leads to the development of the adult mouse kidney. In the present study, we investigated the morphological events that characterize the early stages of the mesenchymal-to-epithelial transition of cap mesenchymal cells, analyzing in depth the relationship between cap mesenchymal induction and ureteric bud (UB) branching. Design and methods: Normal kidneys of newborn non-obese diabetic (NOD) mice were excised and prepared for light and electron microscopic examination. Results: Nephrogenesis was evident in the outer portion of the renal cortex of all examined samples. This process was mainly due to the interaction of two primordial derivatives, the ureteric bud and the metanephric mesenchyme. Early renal developmental stages were initially characterized by the formation of a continuous layer of condensed mesenchymal cells around the tips of the ureteric buds. These caps of mesenchymal cells affected the epithelial cells of the underlying ureteric bud, possibly inducing their growth and branching. Conclusions: The present study provides morphological evidence of the reciprocal induction between the ureteric bud and the metanephric mesenchyme showing that the ureteric buds convert mesenchyme to epithelium that in turn stimulates the growth and the branching of the ureteric bud

    Quasiperiodic oscillations in a strong gravitational field around neutron stars testing braneworld models

    Full text link
    The strong gravitational field of neutron stars in the brany universe could be described by spherically symmetric solutions with a metric in the exterior to the brany stars being of the Reissner-Nordstrom type containing a brany tidal charge representing the tidal effect of the bulk spacetime onto the star structure. We investigate the role of the tidal charge in orbital models of high-frequency quasiperiodic oscillations (QPOs) observed in neutron star binary systems. We focus on the relativistic precession model. We give the radial profiles of frequencies of the Keplerian (vertical) and radial epicyclic oscillations. We show how the standard relativistic precession model modified by the tidal charge fits the observational data, giving estimates of the allowed values of the tidal charge and the brane tension based on the processes going in the vicinity of neutron stars. We compare the strong field regime restrictions with those given in the weak-field limit of solar system experiments.Comment: 26 pages, 6 figure

    Spectral optical monitoring of 3C390.3 in 1995-2007: I. Light curves and flux variation of the continuum and broad lines

    Full text link
    Here we present the results of the long-term (1995-2007) spectral monitoring of the broad line radio galaxy \object{3C~390.3}, a well known AGN with the double peaked broad emission lines, usually assumed to be emitted from an accretion disk. To explore dimensions and structure of the BLR, we analyze the light curves of the broad Hα\alpha and Hβ\beta line fluxes and the continuum flux. In order to find changes in the BLR, we analyze the Hα\alpha and Hβ\beta line profiles, as well as the change in the line profiles during the monitoring period. First we try to find a periodicity in the continuum and Hβ\beta light curves, finding that there is a good chance for quasi-periodical oscillations. Using the line shapes and their characteristics (as e.g. peaks separation and their intensity ratio, or FWHM) of broad Hβ\beta and Hα\alpha lines, we discuss the structure of the BLR. Also, we cross-correlate the continuum flux with Hβ\beta and Hα\alpha lines to find dimensions of the BLR. We found that during the monitoring period the broad emission component of the Hα\alpha and Hβ\beta lines, and the continuum flux varied by a factor of \approx 4-5. Also, we detected different structure in the line profiles of Hα\alpha and Hβ\beta. It seems that an additional central component is present and superposed to the disk emission. In the period of high activity (after 2002), Hβ\beta became broader than Hα\alpha and red wing of Hβ\beta was higher than the one of Hα\alpha. We found time lags of \sim95 days between the continuum and Hβ\beta flux, and about 120 days between the continuum and Hα\alpha flux. Variation in the line profiles, as well as correlation between the line and continuum flux during the monitoring period is in the favor of the disk origin of the broad lines with the possible contribution of some additional region and/or some kind of perturbation in the disk.Comment: 32 pages, accepted to A&A, typos correcte

    Voice-based assessments of trustworthiness, competence, and warmth in blind and sighted adults

    Get PDF
    The study of voice perception in congenitally blind individuals allows researchers rare insight into how a lifetime of visual deprivation affects the development of voice perception. Previous studies have suggested that blind adults outperform their sighted counterparts in low-level auditory tasks testing spatial localization and pitch discrimination, as well as in verbal speech processing; however, blind persons generally show no advantage in nonverbal voice recognition or discrimination tasks. The present study is the first to examine whether visual experience influences the development of social stereotypes that are formed on the basis of nonverbal vocal characteristics (i.e., voice pitch). Groups of 27 congenitally or early-blind adults and 23 sighted controls assessed the trustworthiness, competence, and warmth of men and women speaking a series of vowels, whose voice pitches had been experimentally raised or lowered. Blind and sighted listeners judged both men’s and women’s voices with lowered pitch as being more competent and trustworthy than voices with raised pitch. In contrast, raised-pitch voices were judged as being warmer than were lowered-pitch voices, but only for women’s voices. Crucially, blind and sighted persons did not differ in their voice-based assessments of competence or warmth, or in their certainty of these assessments, whereas the association between low pitch and trustworthiness in women’s voices was weaker among blind than sighted participants. This latter result suggests that blind persons may rely less heavily on nonverbal cues to trustworthiness compared to sighted persons. Ultimately, our findings suggest that robust perceptual associations that systematically link voice pitch to the social and personal dimensions of a speaker can develop without visual input
    corecore