1,388 research outputs found

    Quantum Optics with Atomic Ensembles and Single Atoms in Cavities

    Get PDF
    Current experiments in our group explore the quantum interface between matter and light, with the goal of achieving coherent control for implementing quantum information protocols and quantum networks. We outline recent progress in this direction, including localization to the ground state of motion for an atom trapped in an optical cavity, observation of strong coupling between single Cesium atoms and a monolithic resonator, and generation and characterization of entanglement stored in remote atomic ensembles

    Frequency doubling with KNbO3 in an external cavity

    Get PDF
    Potassium niobate is employed in an external resonator to generate single-frequency tunable radiation near 430 nm. For excitation with 1.35 W of power from a cw titanium-sapphire laser, 0.65 W of blue light is produced. A simple model has been developed to account for thermal lensing in the nonlinear crystal

    Optical bistability for two-level atoms in a standing-wave cavity

    Get PDF
    Observations of optical bistability are reported for a system composed of multiple atomic beams passing through a high-finesse optical cavity. Both the transmitted power and the intracavity fluorescent intensity have been recorded as functions of incident laser power for zero cavity and atomic detunings. A quantitative study has been made of the evolution of the steady-state switching intensities from well below the critical onset of bistability to well above this point. The results show reasonable agreement with a Gaussian-beam theory of optical bistability, but systematic departures are noted

    Blue-light induced infrared absorption in KNbO3

    Get PDF
    We have used a high-finesse cavity to measure the cw intensity dependence and dynamics of blue-light-induced infrared absorption (BLIIRA) in KNbO3 crystals for blue-light intensities between 7 x 10^-4 and 2 x 10^4 W/cm^2. We discuss the detrimental effects of BLIIRA on the efficiency of intracavity frequency doubling and the threshold for parametric oscillation

    Frequency metrology by use of quantum interference

    Get PDF
    Quantum interference in the rate of two-photon excitation of the 6S1/2 → 6P3/2 → 6D5/2 transition in atomic cesium is exploited to demonstrate phase-sensitive frequency demodulation for an optical interval of 612.5 THz. By thus using atoms as ultrafast nonlinear mixing elements, we suggest and analyze a new avenue for absolute comparisons of a dense set of frequencies over the range of 200–2000 nm

    Two-photon spectroscopy of the 6S_(1/2) → 6D_(5/2) transition of trapped atomic cesium

    Get PDF
    Two-photon spectroscopy of atomic cesium confined and cooled in a magneto-optical trap is reported. The hyperfine structure of the 6D_(5/2) state is determined with 1% accuracy. New capabilities for studying ac Stark shifts and kinetic transport for cold atoms are suggested

    Atoms as nonlinear mixers for detection of quantum correlations at ultrahigh frequencies

    Get PDF
    Measurements of quantum correlations are reported for a frequency difference of 25 THz between the signal and idler output fields generated by a subthreshold nondegenerate optical parametric oscillator. By simultaneously exciting a two-photon transition in atomic Cs by a combination of signal, idler, and "references oscillator" fields, we record modulation of the excited-state population due to quantum interference between two alternative excitation pathways. The observed phase-sensitive modulation is proportional to the correlation function〈EsEi〉for the quantized signal and idler fields

    Quantum interference in two-photon excitation with squeezed and coherent fields

    Get PDF
    Two-photon excitation of a three-level atom in a ladder configuration (1-->2-->3) by simultaneous illumination with fields in squeezed vacuum and coherent states results in quantum interference for the excitation process. The particular configuration considered here is one for which the signal and idler output fields of a subthreshold nondegenerate optical parametric oscillator are in resonance with the two-stepwise dipole atomic transitions (1-->2,2-->3), while a "reference oscillator" field is in two-photon resonance with the quadrupole transition (1-->3). In an extension of the work of Ficek and Drummond [Phys. Rev. A 43, 6247 (1991)], a theoretical formulation based on the full quantum master equation for the problem is presented. The combined effects of quantum interference and the nonclassical character of the squeezed state are investigated, and offer the potential for a new detection strategy for quantum fluctuations of the electromagnetic field with ultrahigh frequencies (10's-100's THz). Based on the theory developed, we analyze quantum interference in excitation in several special cases relevant to experimental realizations, including the effects of a small focusing angle of the squeezing onto the atoms, and unusual population inversions. Special emphasis is given to identifying intrinsically quantum optical field effects versus classical field effects. Procedures that could distinguish between the two (i.e., classical and nonclassical) are suggested

    Observation of the Vacuum-Rabi Spectrum for One Trapped Atom

    Get PDF
    The transmission spectrum for one atom strongly coupled to the field of a high-finesse optical resonator is observed to exhibit a clearly resolved vacuum-Rabi splitting characteristic of the normal modes in the eigenvalue spectrum of the atom-cavity system. A new Raman scheme for cooling atomic motion along the cavity axis enables a complete spectrum to be recorded for an individual atom trapped within the cavity mode, in contrast to all previous measurements in cavity QED that have required averaging over many atoms.Comment: 5 pages with 4 figure
    • …
    corecore