15,141 research outputs found
Measurement of tropospheric carbonyl sulfide by microwave spectrometry
Microwave rotational spectrometry is used to measure tropospheric carbonyl sulfide. The instrument and techniques for using it are described
Amortised resource analysis with separation logic
Type-based amortised resource analysis following Hofmann and Jost—where resources are associated with individual elements of data structures and doled out to the programmer under a linear typing discipline—have been successful in providing concrete resource bounds for functional programs, with good support for inference. In this work we translate the idea of amortised resource analysis to imperative languages by embedding a logic of resources, based on Bunched Implications, within Separation Logic. The Separation Logic component allows us to assert the presence and shape of mutable data structures on the heap, while the resource component allows us to state the resources associated with each member of the structure. We present the logic on a small imperative language with procedures and mutable heap, based on Java bytecode. We have formalised the logic within the Coq proof assistant and extracted a certified verification condition generator. We demonstrate the logic on some examples, including proving termination of in-place list reversal on lists with cyclic tails
Chandra observations of the HII complex G5.89-0.39 and TeV gamma-ray source HESSJ1800-240B
We present the results of our investigation, using a Chandra X-ray
observation, into the stellar population of the massive star formation region
G5.89-0.39, and its potential connection to the coincident TeV gamma-ray source
HESSJ1800-240B. G5.89-0.39 comprises two separate HII regions G5.89-0.39A and
G5.89-0.39B (an ultra-compact HII region). We identified 159 individual X-ray
point sources in our observation using the source detection algorithm
\texttt{wavdetect}. 35 X-ray sources are associated with the HII complex
G5.89-0.39. The 35 X-ray sources represent an average unabsorbed luminosity
(0.3-10\,keV) of \,erg/s, typical of B7-B5 type stars. The
potential ionising source of G5.89-0.39B known as Feldt's star is possibly
identified in our observation with an unabsorbed X-ray luminosity suggestive of
a B7-B5 star. The stacked energy spectra of these sources is well-fitted with a
single thermal plasma APEC model with kT5\,keV, and column density
N\,cm (A). The residual
(source-subtracted) X-ray emission towards G5.89-0.39A and B is about 30\% and
25\% larger than their respective stacked source luminosities. Assuming this
residual emission is from unresolved stellar sources, the total
B-type-equivalent stellar content in G5.89-0.39A and B would be 75 stars,
consistent with an earlier estimate of the total stellar mass of hot stars in
G5.89-0.39. We have also looked at the variability of the 35 X-ray sources in
G5.89-0.39. Ten of these sources are flagged as being variable. Further studies
are needed to determine the exact causes of the variability, however the
variability could point towards pre-main sequence stars. Such a stellar
population could provide sufficient kinetic energy to account for a part of the
GeV to TeV gamma-ray emission in the source HESSJ1800-240B.Comment: 34 pages, 9 figure
Modeling Nutrient and Plankton Processes in the California Coastal Transition Zone: 3. Lagrangian Drifters
Two types of numerical Lagrangian drifter experiments were conducted, using a set of increasingly complex and sophisticated models, to investigate the processes associated with the plankton distributions in the California coastal transition zone (CTZ). The first experiment used a one-dimensional (1-D; vertical) time-dependent physical-bio-optical model, which contained a nine-component food web. Vertical velocities, along the track of simulated Lagrangian drifters, derived from a three-dimensional (3-D), primitive equation circulation model developed to simulate the flow observed within the CTZ; were used to parameterize the upwelling and downwelling processes. The second experiment used 880 simulated Lagrangian drifters from a 3-D primitive equation circulation model which was coupled to the same food web and bio-optical model used in the first experiment. Parameterization of the biological processes in both experiments were based upon data obtained during the CTZ field experiments. Comparison of simulations with data provided insight into the role of the biological and physical processes in determining the development of the subsurface chlorophyll maximum and other related features. In both studies, the vertical velocities experienced by a simulated Lagrangian drifter as it was advected offshore while entrained within a filament played a major role in determining the depth to which the euphotic zone and the chlorophyll maximum developed. Also, as the drifters moved offshore, the food web changed from a coastal, neritic food web to an offshore, oligotrophic food web due to the decrease in nutrient availability. The temporal development of the food web constituents following the simulated drifters was dependent upon the environment to which the drifter was exposed. For example, the amount of time upwelled or downwelled and the initial location in the CTZ region greatly affected the development of the food web
Angular Correlations in Internal Pair Conversion of Aligned Heavy Nuclei
We calculate the spatial correlation of electrons and positrons emitted by
internal pair conversion of Coulomb excited nuclei in heavy ion collisions. The
alignment or polarization of the nucleus results in an anisotropic emission of
the electron-positron pairs which is closely related to the anisotropic
emission of -rays. However, the angular correlation in the case of
internal pair conversion exhibits diverse patterns. This might be relevant when
investigating atomic processes in heavy-ion collisions performed at the Coulomb
barrier.Comment: 27 pages + 6 eps figures, uses revtex.sty and epsf.sty,
tar-compressed and uuencoded with uufile
Modeling Nutrient and Plankton Processes in the California Coastal Transition Zone: 1. A Time- and Depth-Dependent Model
A time- and depth-dependent, physical-bio-optical model was developed for the California coastal transition zone (CTZ) with the overall objective of understanding and quantifying the processes that contribute to the vertical and temporal development of nutrient and plankton distributions in the CTZ. The model food web components included silicate, nitrate, ammonium, two phytoplankton size fractions, copepods, doliolids, euphausiids, and a detritus pool. The wavelength-dependent subsurface irradiance field was attenuated by sea water and phytoplankton pigments. The one-dimensional (1-D) model adequately simulated the development and maintenance of a subsurface chlorophyll maximum in different regions within the CTZ. An analysis of the individual terms in the model governing equations revealed that phytoplankton in situ growth was primarily responsible for the creation and maintenance of the subsurface chlorophyll maximum at both coastal and oceanic regions in the CTZ. The depth to which the maximum in situ growth occurred was controlled by the combined effect of light and nutrient limitation. Also, the simulated bio-optical fields demonstrated the effect of nonlinear couplings between food web components and the subsurface irradiance field on vertical biological distributions. In particular, the epsilon-folding scale of the subsurface photosynthetically available radiation (PAR) was influenced by the level of zooplankton grazing
4He experiments can serve as a database for determining the three-nucleon force
We report on microscopic calculations for the 4He compound system in the
framework of the resonating group model employing realistic nucleon-nucleon and
three nucleon forces. The resulting scattering phase shifts are compared to
those of a comprehensive R-matrix analysis of all data in this system, which
are available in numerical form. The agreement between calculation and analysis
is in most cases very good. Adding three-nucleon forces yields in many cases
large effects. For a few cases the new agreement is striking. We relate some
differencies between calculation and analysis to specific data and discuss
neccessary experiments to clarify the situation. From the results we conclude
that the data of the 4He system might be well suited to determine the structure
of the three-nucleon force.Comment: title changed,note added, format of figures changed, appearance of
figures in black-and-white changed, Phys. Rev. C accepte
Lattices of quasi-equational theories as congruence lattices of semilattices with operators, Part I
We show that for every quasivariety K of structures (where both functions and
relations are allowed) there is a semilattice S with operators such that the
lattice of quasi-equational theories of K (the dual of the lattice of
sub-quasivarieties of K) is isomorphic to Con(S,+,0,F). As a consequence, new
restrictions on the natural quasi-interior operator on lattices of
quasi-equational theories are found.Comment: Presented on International conference "Order, Algebra and Logics",
Vanderbilt University, 12-16 June, 2007 25 pages, 2 figure
Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites
Nonlinear-elastic fracture mechanics methods are used to assess the fracture toughness of bulk metallic glass (BMG) composites; results are compared with similar measurements for other monolithic and composite BMG alloys. Mechanistically, plastic shielding gives rise to characteristic resistance-curve behavior where the fracture resistance increases with crack extension. Specifically, confinement of damage by second-phase dendrites is shown to result in enhancement of the toughness by nearly an order of magnitude relative to unreinforced glass
Green's functions for parabolic systems of second order in time-varying domains
We construct Green's functions for divergence form, second order parabolic
systems in non-smooth time-varying domains whose boundaries are locally
represented as graph of functions that are Lipschitz continuous in the spatial
variables and 1/2-H\"older continuous in the time variable, under the
assumption that weak solutions of the system satisfy an interior H\"older
continuity estimate. We also derive global pointwise estimates for Green's
function in such time-varying domains under the assumption that weak solutions
of the system vanishing on a portion of the boundary satisfy a certain local
boundedness estimate and a local H\"older continuity estimate. In particular,
our results apply to complex perturbations of a single real equation.Comment: 25 pages, 0 figur
- …