245 research outputs found
Comparative Monte Carlo Efficiency by Monte Carlo Analysis
We propose a modified power method for computing the subdominant eigenvalue
of a matrix or continuous operator. Here we focus on defining
simple Monte Carlo methods for its application. The methods presented use
random walkers of mixed signs to represent the subdominant eigenfuction.
Accordingly, the methods must cancel these signs properly in order to sample
this eigenfunction faithfully. We present a simple procedure to solve this sign
problem and then test our Monte Carlo methods by computing the of
various Markov chain transition matrices. We first computed for
several one and two dimensional Ising models, which have a discrete phase
space, and compared the relative efficiencies of the Metropolis and heat-bath
algorithms as a function of temperature and applied magnetic field. Next, we
computed for a model of an interacting gas trapped by a harmonic
potential, which has a mutidimensional continuous phase space, and studied the
efficiency of the Metropolis algorithm as a function of temperature and the
maximum allowable step size . Based on the criterion, we
found for the Ising models that small lattices appear to give an adequate
picture of comparative efficiency and that the heat-bath algorithm is more
efficient than the Metropolis algorithm only at low temperatures where both
algorithms are inefficient. For the harmonic trap problem, we found that the
traditional rule-of-thumb of adjusting so the Metropolis acceptance
rate is around 50% range is often sub-optimal. In general, as a function of
temperature or , for this model displayed trends defining
optimal efficiency that the acceptance ratio does not. The cases studied also
suggested that Monte Carlo simulations for a continuum model are likely more
efficient than those for a discretized version of the model.Comment: 23 pages, 8 figure
Introduction to Quantum Information Processing
As a result of the capabilities of quantum information, the science of
quantum information processing is now a prospering, interdisciplinary field
focused on better understanding the possibilities and limitations of the
underlying theory, on developing new applications of quantum information and on
physically realizing controllable quantum devices. The purpose of this primer
is to provide an elementary introduction to quantum information processing, and
then to briefly explain how we hope to exploit the advantages of quantum
information. These two sections can be read independently. For reference, we
have included a glossary of the main terms of quantum information.Comment: 48 pages, to appear in LA Science. Hyperlinked PDF at
http://www.c3.lanl.gov/~knill/qip/prhtml/prpdf.pdf, HTML at
http://www.c3.lanl.gov/~knill/qip/prhtm
An Infinite Swapping Approach to the Rare-Event Sampling Problem
We describe a new approach to the rare-event Monte Carlo sampling problem.
This technique utilizes a symmetrization strategy to create probability
distributions that are more highly connected and thus more easily sampled than
their original, potentially sparse counterparts. After discussing the formal
outline of the approach and devising techniques for its practical
implementation, we illustrate the utility of the technique with a series of
numerical applications to Lennard-Jones clusters of varying complexity and
rare-event character.Comment: 24 pages, 16 figure
Magnetic impurity affected by spin-orbit coupling: Behavior near a topological phase transition
We investigate the effect of spin-orbit coupling on the behavior of a magnetic impurity at the edge of a zigzag graphene ribbon by means of quantum Monte Carlo simulations. A peculiar interplay of Kane-Mele type spin-orbit and impurity-host coupling is found to greatly affect properties for the local moment. The local characters of the impurity are mainly dominated by the local density of states at the edge, such as double occupancy, magnetic moment, and spin susceptibilities. The special helical nature of the topological insulator on the boundary is found to affect nonlocal quantities, such as the two-particle and spin-spin correlation functions linking electrons on the impurity with those in the conduction band; in particular, due to the spin-orbit coupling, the symmetry of the spin rotation in the Kondo cloud around the impurity is partly broken.Peer reviewe
- …
