3,433 research outputs found

    On Superluminal motions in photon and particle tunnelings

    Full text link
    It is shown that the Hartman-Fletcher effect is valid for all the known expressions of the mean tunnelling time, in various nonrelativistic approaches, for the case of finite width barriers without absorption. Then, we show that the same effect is not valid for the tunnelling time mean-square fluctuations. On the basis of the Hartman-Fletcher effect and the known analogy between photon and nonrelativistic-particle tunnelling, one can explain the Superluminal group-velocities observed in various photon tunnelling experiments (without violation of the so-called "Einstein causality").Comment: standard LaTeX file; accepted for publication in Phys. Lett.

    Single Proton Knock-Out Reactions from 24,25,26F

    Full text link
    The cross sections of the single proton knock-out reactions from 24F, 25F, and 26F on a 12C target were measured at energies of about 50 MeV/nucleon. Ground state populations of 6.6+-.9 mb, 3.8+-0.6 mb for the reactions 12C(24F,23O) and 12C(25F,24O) were extracted, respectively. The data were compared to calculations based on the many-body shell model and the eikonal theory. In the reaction 12C(26F,25O) the particle instability of 25O was confirmed

    Collective Excitations of (154)Sm nucleus at FEL{gamma}+LHC Collider

    Full text link
    The production of collective excitations of the (154)Sm at FEL{gamma}+LHC collider is investigated. We show that this machine will be a powerful tool for investigation of high energy level excitations.Comment: 6 pages, 1 figure, 4 table

    Renewable Energy in Illinois: The Agrivoltaics Contribution

    Get PDF
    Siting of renewable energy production facilities on agricultural land often engenders conflict at the community level. The desire to preserve productive farmland and protect aesthetic connections to the rural landscape can be a significant impediment to renewable energy development. With respect to solar energy production, agrivoltaics— the colocation of solar power structures and agriculture—is a potential alternative to traditional binary approaches of characterizing land use. As a novel technological and land use strategy, a better understanding of the agrivoltaic policy environment is necessary to actualize implications for rural communities and progress toward renewable energy goals. Illinois, with its abundance in untapped renewable energy resources, highly productive agricultural land, and significant energy demand to meet the needs of its large population and economy, stands at the forefront of agrivoltaic research and development. This article identifies and analyzes key regulatory concepts in the agrivoltaic space, as well as policy observations from various stakeholder groups. The article concludes by proposing policy considerations for Illinois that may apply in similarly positioned states within the Midwest

    Negative phase time for Scattering at Quantum Wells: A Microwave Analogy Experiment

    Full text link
    If a quantum mechanical particle is scattered by a potential well, the wave function of the particle can propagate with negative phase time. Due to the analogy of the Schr\"odinger and the Helmholtz equation this phenomenon is expected to be observable for electromagnetic wave propagation. Experimental data of electromagnetic wells realized by wave guides filled with different dielectrics confirm this conjecture now.Comment: 10 pages, 6 figure

    Measurement of Superluminal optical tunneling times in double-barrier photonic bandgaps

    Get PDF
    Tunneling of optical pulses at 1.5 micron wavelength through double-barrier periodic fiber Bragg gratings is experimentally investigated. Tunneling time measurements as a function of barrier distance show that, far from the resonances of the structure, the transit time is paradoxically short, implying Superluminal propagation, and almost independent of the distance between the barriers. These results are in agreement with theoretical predictions based on phase time analysis and also provide an experimental evidence, in the optical context, of the analogous phenomenon expected in Quantum Mechanics for non-resonant superluminal tunneling of particles across two successive potential barriers. [Attention is called, in particular, to our last Figure]. PACS nos.: 42.50.Wm, 03.65.Xp, 42.70.Qs, 03.50.De, 03.65.-w, 73.40.GkComment: LaTeX file (8 pages), plus 5 figure

    Statistical competencies for medical research learners: What is fundamental?

    Get PDF
    IntroductionIt is increasingly essential for medical researchers to be literate in statistics, but the requisite degree of literacy is not the same for every statistical competency in translational research. Statistical competency can range from 'fundamental' (necessary for all) to 'specialized' (necessary for only some). In this study, we determine the degree to which each competency is fundamental or specialized.MethodsWe surveyed members of 4 professional organizations, targeting doctorally trained biostatisticians and epidemiologists who taught statistics to medical research learners in the past 5 years. Respondents rated 24 educational competencies on a 5-point Likert scale anchored by 'fundamental' and 'specialized.'ResultsThere were 112 responses. Nineteen of 24 competencies were fundamental. The competencies considered most fundamental were assessing sources of bias and variation (95%), recognizing one's own limits with regard to statistics (93%), identifying the strengths, and limitations of study designs (93%). The least endorsed items were meta-analysis (34%) and stopping rules (18%).ConclusionWe have identified the statistical competencies needed by all medical researchers. These competencies should be considered when designing statistical curricula for medical researchers and should inform which topics are taught in graduate programs and evidence-based medicine courses where learners need to read and understand the medical research literature

    Negative group delay for Dirac particles traveling through a potential well

    Full text link
    The properties of group delay for Dirac particles traveling through a potential well are investigated. A necessary condition is put forward for the group delay to be negative. It is shown that this negative group delay is closely related to its anomalous dependence on the width of the potential well. In order to demonstrate the validity of stationary-phase approach, numerical simulations are made for Gaussian-shaped temporal wave packets. A restriction to the potential-well's width is obtained that is necessary for the wave packet to remain distortionless in the travelling. Numerical comparison shows that the relativistic group delay is larger than its corresponding non-relativistic one.Comment: 10 pages, 5 figure
    corecore