9,459 research outputs found
Simulations of dense granular flow: Dynamic Arches and Spin Organization
We present a numerical model for a two dimensional (2D) granular assembly,
falling in a rectangular container when the bottom is removed. We observe the
occurrence of cracks splitting the initial pile into pieces, like in
experiments. We study in detail various mechanisms connected to the
`discontinuous decompaction' of this granular material. In particular, we focus
on the history of one single long range crack, from its origin at one side
wall, until it breaks the assembly into two pieces. This event is correlated to
an increase in the number of collisions, i.e. strong pressure, and to a
momentum wave originated by one particle. Eventually, strong friction reduces
the falling velocity such that the crack may open below the slow, high pressure
`dynamic arch'. Furthermore, we report the presence of large, organized
structures of the particles' angular velocities in the dense parts of the
granulate when the number of collisions is large.Comment: Submitted to J. Phys.
Simulations of Pattern Formation in Vibrated Granular Media
We present simulations of peak pattern formation in vibrated two-dimensional
(2D) granulates and measure the dispersion relation of the pattern for various
frequencies, accelerations, cell sizes, and layer heights. We report the first
quantitative data from numerical simulations showing an interesting dependence
of the pattern wavelength on the acceleration and the system size. Our results
are related to recent experimental findings and theoretical predictions for
gravity waves.Comment: 6 pages PS-file including figures, (version accepted at Europhys.
Lett. 26.10.96
Block to granular-like transition in dense bubble flows
We have experimentally investigated 2-dimensional dense bubble flows
underneath inclined planes. Velocity profiles and velocity fluctuations have
been measured. A broad second-order phase transition between two dynamical
regimes is observed as a function of the tilt angle . For low
values, a block motion is observed. For high values, the velocity
profile becomes curved and a shear velocity gradient appears in the flow.Comment: Europhys. Lett. (2003) in pres
Size segregation and convection
The size segregation of granular materials in a vibrating container is
investigated using Molecular Dynamics. We find that the rising of larger
particles is accompanied by the existence of convection cells even in the case
of the lowest possible frequencies. The convection can, however, also be
triggered by the larger particle itself. The possibility of rising through this
mechanism strongly depends on the depth of the larger particle.Comment: 7 pages, 4 figure
Speckle visibility spectroscopy and variable granular fluidization
We introduce a dynamic light scattering technique capable of resolving motion
that changes systematically, and rapidly, with time. It is based on the
visibility of a speckle pattern for a given exposure duration. Applying this to
a vibrated layer of glass beads, we measure the granular temperature and its
variation with phase in the oscillation cycle. We observe several transitions
involving jammed states, where the grains are at rest during some portion of
the cycle. We also observe a two-step decay of the temperature on approach to
jamming.Comment: 4 pages, 4 figures, experimen
Magneto-elastic oscillations of neutron stars: exploring different magnetic field configurations
We study magneto-elastic oscillations of highly magnetized neutron stars
(magnetars) which have been proposed as an explanation for the quasi-periodic
oscillations (QPOs) appearing in the decaying tail of the giant flares of soft
gamma-ray repeaters (SGRs). We extend previous studies by investigating various
magnetic field configurations, computing the Alfv\'en spectrum in each case and
performing magneto-elastic simulations for a selected number of models. By
identifying the observed frequencies of 28 Hz (SGR 1900+14) and 30 Hz (SGR
1806-20) with the fundamental Alfv\'en QPOs, we estimate the required surface
magnetic field strength. For the magnetic field configurations investigated
(dipole-like poloidal, mixed toroidal-poloidal with a dipole-like poloidal
component and a toroidal field confined to the region of field lines closing
inside the star, and for poloidal fields with an additional quadrupole-like
component) the estimated dipole spin-down magnetic fields are between 8x10^14 G
and 4x10^15 G, in broad agreement with spin-down estimates for the SGR sources
producing giant flares. A number of these models exhibit a rich Alfv\'en
continuum revealing new turning points which can produce QPOs. This allows one
to explain most of the observed QPO frequencies as associated with
magneto-elastic QPOs. In particular, we construct a possible configuration with
two turning points in the spectrum which can explain all observed QPOs of SGR
1900+14. Finally, we find that magnetic field configurations which are entirely
confined in the crust (if the core is assumed to be a type I superconductor)
are not favoured, due to difficulties in explaining the lowest observed QPO
frequencies (f<30 Hz).Comment: 21 pages, 16 figures, 6 tables, matched to version accepted by MNRAS
with extended comparison/discussion to previous wor
Static Versus Dynamic Friction: The Role of Coherence
A simple model for solid friction is analyzed. It is based on tangential
springs representing interlocked asperities of the surfaces in contact. Each
spring is given a maximal strain according to a probability distribution. At
their maximal strain the springs break irreversibly. Initially all springs are
assumed to have zero strain, because at static contact local elastic stresses
are expected to relax. Relative tangential motion of the two solids leads to a
loss of coherence of the initial state: The springs get out of phase due to
differences in their sizes. This mechanism alone is shown to lead to a
difference between static and dynamic friction forces already. We find that in
this case the ratio of the static and dynamic coefficients decreases with
increasing relative width of the probability distribution, and has a lower
bound of 1 and an upper bound of 2.Comment: 10 pages, 2 figures, revtex
Vibration-induced granular segregation: a phenomenon driven by three mechanisms
The segregation of large spheres in a granular bed under vertical vibrations
is studied. In our experiments we systematically measure rise times as a
function of density, diameter and depth; for two different sinusoidal
excitations. The measurements reveal that: at low frequencies, inertia and
convection are the only mechanisms behind segregation. Inertia (convection)
dominates when the relative density is greater (less) than one. At high
frequencies, where convection is suppressed, fluidization of the granular bed
causes either buoyancy or sinkage and segregation occurs.Comment: 4 pages. 3 figures, revtex4, to appear in PRL (in press
- …