4,416 research outputs found

    Interplay of charge and spin correlations in nickel perovskites

    Full text link
    Analyzing the motion of low--spin (s=1/2)(s=1/2) holes in a high--spin (S=1)(S=1) background, we derive a sort of generalized t--J Hamiltonian for the NiO2\rm NiO_2 planes of Sr--doped nickelates. In addition to the rather complex carrier--spin and spin--spin couplings we take into account the coupling of the doped holes to in--plane oxygen breathing modes by a Holstein--type interaction term. Because of strong magnetic confinement effects the holes are nearly entirely prelocalized and the electron--phonon coupling becomes much more effective in forming polarons than in the isostructural cuprates. In the light of recent experiments on La2−xSrxNiO4\rm La_{2-x}Sr_xNiO_4 we discuss how the variety of the observed transport and charge/spin--ordering phenomena can be qualitatively understood in terms of our model Hamiltonian.Comment: 2 pages, LTpaper.sty, Proc. XXI Int. Conf. on Low Temp. Phys. Prague 9

    Melting of Quasi-Two-Dimensional Charge Stripes in La5/3Sr1/3NiO4

    Full text link
    Commensurability effects for nickelates have been studied by the first neutron experiments on La5/3Sr1/3NiO4. Upon cooling, this system undergoes three successive phase transitions associated with quasi-two-dimensional (2D) commensurate charge and spin stripe ordering in the NiO2_2 planes. The two lower temperature phases (denoted as phase II and III) are stripe lattice states with quasi-long-range in-plane charge correlation. When the lattice of 2D charge stripes melts, it goes through an intermediate glass state (phase I) before becoming a disordered liquid state. This glass state shows short-range charge order without spin order, and may be called a "stripe glass" which resembles the hexatic/nematic state in 2D melting.Comment: 10 pages, RevTex, 4 figures available on request to [email protected]

    Conduction of topologically-protected charged ferroelectric domain walls

    Full text link
    We report on the observation of nanoscale conduction at ferroelectric domain walls in hexagonal HoMnO3 protected by the topology of multiferroic vortices using in situ conductive atomic force microscopy, piezoresponse force microscopy, and kelvin-probe force microscopy at low temperatures. In addition to previously observed Schottky-like rectification at low bias [Phys. Rev. Lett., 104, 217601 (2010)], conductance spectra reveal that negatively charged tail-to-tail walls exhibit enhanced conduction at high forward bias, while positively charged head-to-head walls exhibit suppressed conduction at high reverse bias. Our results pave the way for understanding the semiconducting properties of the domains and domain walls in small-gap ferroelectrics.Comment: 8 pages, 4 figure

    Magnetic excitations of the Cu2+^{2+} quantum spin chain in Sr3_3CuPtO6_6

    Get PDF
    We report the magnetic excitation spectrum as measured by inelastic neutron scattering for a polycrystalline sample of Sr3_3CuPtO6_6. Modeling the data by the 2+4 spinon contributions to the dynamical susceptibility within the chains, and with interchain coupling treated in the random phase approximation, accounts for the major features of the powder-averaged structure factor. The magnetic excitations broaden considerably as temperature is raised, persisting up to above 100 K and displaying a broad transition as previously seen in the susceptibility data. No spin gap is observed in the dispersive spin excitations at low momentum transfer, which is consistent with the gapless spinon continuum expected from the coordinate Bethe ansatz. However, the temperature dependence of the excitation spectrum gives evidence of some very weak interchain coupling.Comment: 9 pages, 5 figure

    Evidence for magnetic clusters in BaCoO3_3

    Full text link
    Magnetic properties of the transition metal oxide BaCoO3_3 are analyzed on the basis of the experimental and theoretical literature available via ab inito calculations. These can be explained by assuming the material to be formed by noninteracting ferromagnetic clusters of about 1.2 nm in diameter separated by about 3 diameters. Above about 50 K, the so-called blocking temperature, superparamagnetic behavior of the magnetic clusters occurs and, above 250 K, paramagnetism sets in.Comment: 4 pages, 1 figur

    Fabrication and Characterization of Topological Insulator Bi2_2Se3_3 Nanocrystals

    Full text link
    In the recently discovered class of materials known as topological insulators, the presence of strong spin-orbit coupling causes certain topological invariants in the bulk to differ from their values in vacuum. The sudden change of invariants at the interface results in metallic, time reversal invariant surface states whose properties are useful for applications in spintronics and quantum computation. However, a key challenge is to fabricate these materials on the nanoscale appropriate for devices and probing the surface. To this end we have produced 2 nm thick nanocrystals of the topological insulator Bi2_2Se3_3 via mechanical exfoliation. For crystals thinner than 10 nm we observe the emergence of an additional mode in the Raman spectrum. The emergent mode intensity together with the other results presented here provide a recipe for production and thickness characterization of Bi2_2Se3_3 nanocrystals.Comment: 4 pages, 3 figures (accepted for publication in Applied Physics Letters

    Ab initio study of the influence of nanoscale doping inhomogeneities in the phase separated state of La1−x_{1-x}Cax_{x}MnO3_3

    Full text link
    The chemical influence in the phase separation phenomenon that occurs in perovskite manganites is discussed by means of ab initio calculations. Supercells have been used to simulate a phase separated state, that occurs at Ca concentrations close to the localized to itinerant crossover. We have first considered a model with two types of magnetic ordering coexisting within the same compound. This is not stable. However, a non-isotropic distribution of chemical dopants is found to be the ground state. This leads to regions in the system with different effective concentrations, that would always accompany the magnetic phase separation at the same nanometric scale, with hole-rich regions being more ferromagnetic in character and hole-poor regions being in the antiferromagnetic region of the phase diagram, as long as the system is close to a phase crossover.Comment: 8 pages, 7 figures, 1 tabl

    Charge and Spin Dynamics of an Ordered Stripe Phase in La_(1 2/3)Sr_(1/3)NiO_4 by Raman Spectroscopy

    Full text link
    For La_(1 2/3)Sr_(1/3)NiO_4 -- a commensurately doped Mott-Hubbard system -- charge- and spin-ordering in a stripe phase has been investigated by phononic and magnetic Raman scattering. Formation of a superlattice and an opening of a pseudo-gap in the electron-hole excitation spectra as well as two types of double-spin excitations -- within the antiferromagnetic domain and across the domain wall -- are observed below the charge-ordering transition. The temperature dependence suggests that the spin ordering is driven by charge ordering and that fluctuating stripes persist above the ordering transition.Comment: 5 pages, 4 EPS figures; to appear in Phys. Rev. Let

    Colossal magnon-phonon coupling in multiferroic Eu0.75_{0.75}Y0.25_{0.25}MnO3_3

    Full text link
    We report the spectra of magnetically induced electric dipole absorption in Eu0.75_{0.75}Y0.25_{0.25}MnO3_3 from temperature dependent far infrared spectroscopy (10-250 cm−1^{-1}). These spectra, which occur only in the e∣∣ae||a polarization, consist of two relatively narrow electromagnon features that onset at TFE=30T_{FE}=30 K and a broad absorption band that persists to temperatures well above TN=47T_N=47 K. The observed excitations account for the step up of the static dielectric constant in the ferroelectric phase. The electromagnon at 80 cm−1^{-1} is observed to be strongly coupled to the nearby lowest optical phonon which transfers more than 1/2 of its spectral weight to the magnon. We attribute the origin of the broad background absorption to the two magnon emission decay process of the phonon.Comment: 4 pages, 3 figure
    • …
    corecore