21,389 research outputs found

    Correlations and fluctuations of a confined electron gas

    Full text link
    The grand potential Ω\Omega and the response R=Ω/xR = - \partial \Omega /\partial x of a phase-coherent confined noninteracting electron gas depend sensitively on chemical potential μ\mu or external parameter xx. We compute their autocorrelation as a function of μ\mu, xx and temperature. The result is related to the short-time dynamics of the corresponding classical system, implying in general the absence of a universal regime. Chaotic, diffusive and integrable motions are investigated, and illustrated numerically. The autocorrelation of the persistent current of a disordered mesoscopic ring is also computed.Comment: 12 pages, 1 figure, to appear in Phys. Rev.

    New Results for Diffusion in Lorentz Lattice Gas Cellular Automata

    Full text link
    New calculations to over ten million time steps have revealed a more complex diffusive behavior than previously reported, of a point particle on a square and triangular lattice randomly occupied by mirror or rotator scatterers. For the square lattice fully occupied by mirrors where extended closed particle orbits occur, anomalous diffusion was still found. However, for a not fully occupied lattice the super diffusion, first noticed by Owczarek and Prellberg for a particular concentration, obtains for all concentrations. For the square lattice occupied by rotators and the triangular lattice occupied by mirrors or rotators, an absence of diffusion (trapping) was found for all concentrations, except on critical lines, where anomalous diffusion (extended closed orbits) occurs and hyperscaling holds for all closed orbits with {\em universal} exponents df=74{\displaystyle{d_f = \frac{7}{4}}} and τ=157{\displaystyle{\tau = \frac{15}{7}}}. Only one point on these critical lines can be related to a corresponding percolation problem. The questions arise therefore whether the other critical points can be mapped onto a new percolation-like problem, and of the dynamical significance of hyperscaling.Comment: 52 pages, including 18 figures on the last 22 pages, email: [email protected]

    A Catalog of Transient X-ray Sources in M31

    Full text link
    From October 1999 to August 2002, 45 transient X-ray sources were detected in M31 by Chandra and XMM-Newton. We have performed spectral analysis of all XMM-Newton and Chandra ACIS detections of these sources, as well as flux measurements of Chandra HRC detections. The result is absorption-corrected X-ray lightcurves for these sources covering this 2.8 year period, along with spectral parameters for several epochs of the outbursts of most of the transient sources. We supply a catalog of the locations, outburst dates, peak observed luminosities, decay time estimates, and spectral properties of the transient sources, and we discuss similarities with Galactic X-ray novae. Duty cycle estimates are possible for 8 of the transients and range from 40% to 2%; upper limits to the duty cycles are estimated for an additional 15 transients and cover a similar range. We find 5 transients which have rapid decay times and may be ultra-compact X-ray binaries. Spectra of three of the transients suggest they may be faint Galactic foreground sources. If even one is a foreground source, this suggests a surface density of faint transient X-ray sources of >~1 deg2^{-2}.Comment: 63 pages, 22 figures, 3 tables, accepted for publication in Ap

    Kelvin Probe Studies of Cesium Telluride Photocathode for AWA Photoinjector

    Full text link
    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (~50 nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.Comment: 5 pages, 6 figure

    Phase Transition in Sexual Reproduction and Biological Evolution

    Full text link
    Using Monte Carlo model of biological evolution we have discovered that populations can switch between two different strategies of their genomes' evolution; Darwinian purifying selection and complementing the haplotypes. The first one is exploited in the large panmictic populations while the second one in the small highly inbred populations. The choice depends on the crossover frequency. There is a power law relation between the critical value of crossover frequency and the size of panmictic population. Under the constant inbreeding this critical value of crossover does not depend on the population size and has a character of phase transition. Close to this value sympatric speciation is observed.Comment: 13 pages, 8 figure
    corecore