10,090 research outputs found
The Higgs mass in the MSSM infrared fixed point scenario
In the infrared fixed point (IFP) scenario of the minimal supersymmetric
model (MSSM), the top-quark mass and other physical quantities of the
low-energy theory are insensitive to the values of the parameters of the theory
at some high energy scale. In this framework we evaluate the light CP-even
Higgs mass, , taking into account some important effects that had not been
previously considered. In particular, the supersymmetric correction to the
relation between the running and the physical top-quark masses lowers the value
of , thereby implying a lower predicted value of . Assuming a
supersymmetric threshold of TeV and GeV, we find an upper
bound of GeV; the most plausible value of lies somewhat
below the upper bound. This places the Higgs boson in the IFP scenario well
within the reach of the LEP-2 Higgs search.Comment: 18 pages, LaTeX, 5 ps figures, uses psfig.sty. Final version, some
comments and a figure added, references correcte
Will at least one of the Higgs bosons of the next-to-minimal supersymmetric extension of the Standard Model be observable at LEP2 or the LHC?
We demonstrate that there are regions of parameter space in the
next-to-minimal (i.e. two-Higgs-doublet, one-Higgs-singlet superfield)
supersymmetric extension of the SM for which none of the Higgs bosons are
observable either at LEP2 with and an integrated luminosity
of or at the LHC with .Comment: 6 pages, full postscript file also available via anonymous ftp at
ftp://ucdhep.ucdavis.edu/gunion/nmssm_sm96.ps To appear in ``Proceedings of
the 1996 DPF/DPB Summer Study on New Directions for High Energy Physics'
Mass-degenerate Higgs bosons at 125 GeV in the Two-Higgs-Doublet Model
The analysis of the Higgs boson data by the ATLAS and CMS Collaborations
appears to exhibit an excess of h --> gamma\gamma events above the Standard
Model (SM) expectations; whereas no significant excess is observed in h --> ZZ*
--> {four lepton} events, albeit with large statistical uncertainty due to the
small data sample. These results (assuming they persist with further data)
could be explained by a pair of nearly mass-degenerate scalars, one of which is
a SM-like Higgs boson and the other is a scalar with suppressed couplings to
W+W- and ZZ. In the two Higgs doublet model, the observed \gamma\gamma and ZZ*
--> {four lepton} data can be reproduced by an approximately degenerate CP-even
(h) and CP-odd (A) Higgs boson for values of \sin(\beta-\alpha) near unity and
0.7 < \tan\beta < 1. An enhanced \gamma\gamma signal can also arise in cases
where m_h ~ m_H, m_H ~ m_A, or m_h ~ m_H ~ m_A. Since the ZZ* --> {four lepton}
signal derives primarily from a SM-like Higgs boson whereas the \gamma\gamma
signal receives contributions from two (or more) nearly mass-degenerate states,
one would expect a slightly different invariant mass peak in the ZZ* --> {four
lepton} and \gamma\gamma channels. The phenomenological consequences of such
models can be tested with additional Higgs data that will be collected at the
LHC in the near future.Comment: 18 pages, 19 pdf figures, v2: references added, v3&v4: added refs and
explanation
Report of the Higgs Working Group of the Tevatron Run 2 SUSY/Higgs Workshop
This report presents the theoretical analysis relevant for Higgs physics at
the upgraded Tevatron collider and documents the Higgs Working Group
simulations to estimate the discovery reach in Run 2 for the Standard Model and
MSSM Higgs bosons. Based on a simple detector simulation, we have determined
the integrated luminosity necessary to discover the SM Higgs in the mass range
100-190 GeV. The first phase of the Run 2 Higgs search, with a total integrated
luminosity of 2 fb-1 per detector, will provide a 95% CL exclusion sensitivity
comparable to that expected at the end of the LEP2 run. With 10 fb-1 per
detector, this exclusion will extend up to Higgs masses of 180 GeV, and a
tantalizing 3 sigma effect will be visible if the Higgs mass lies below 125
GeV. With 25 fb-1 of integrated luminosity per detector, evidence for SM Higgs
production at the 3 sigma level is possible for Higgs masses up to 180 GeV.
However, the discovery reach is much less impressive for achieving a 5 sigma
Higgs boson signal. Even with 30 fb-1 per detector, only Higgs bosons with
masses up to about 130 GeV can be detected with 5 sigma significance. These
results can also be re-interpreted in the MSSM framework and yield the required
luminosities to discover at least one Higgs boson of the MSSM Higgs sector.
With 5-10 fb-1 of data per detector, it will be possible to exclude at 95% CL
nearly the entire MSSM Higgs parameter space, whereas 20-30 fb-1 is required to
obtain a 5 sigma Higgs discovery over a significant portion of the parameter
space. Moreover, in one interesting region of the MSSM parameter space (at
large tan(beta)), the associated production of a Higgs boson and a b b-bar pair
is significantly enhanced and provides potential for discovering a non-SM-like
Higgs boson in Run 2.Comment: 185 pages, 124 figures, 55 table
Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions
In this work we study the behavior of relativistic ideal Bose and Fermi gases
in two space dimensions. Making use of polylogarithm functions we derive a
closed and unified expression for their densities. It is shown that both type
of gases are essentially inequivalent, and only in the non-relativistic limit
the spinless and equal mass Bose and Fermi gases are equivalent as known in the
literature.Comment: 6 pages, 1 figur
Derivation of and in the Minimal Supersymmetric Standard Model
In the minimal supersymmetric standard model, the Higgs sector has two
unknown parameters, usually taken to be and ,
the mass of its one physical pseudoscalar particle. By minimizing the minimum
of the Higgs potential along a certain direction in parameter space, it is
shown that + radiative correction, and if one further plausible
assumption is made, .Comment: 7 pages, University of California, Riverside Report No. UCRHEP-T105
(Feb 1993). [Discussion of radiative correction is now included.
One-loop Effective Potential for a Fixed Charged Self-interacting Bosonic Model at Finite Temperature with its Related Multiplicative Anomaly
The one-loop partition function for a charged self-interacting Bose gas at
finite temperature in D-dimensional spacetime is evaluated within a path
integral approach making use of zeta-function regularization. For D even, a new
additional vacuum term ---overlooked in all previous treatments and coming from
the multiplicative anomaly related to functional determinants-- is found and
its dependence on the mass and chemical potential is obtained. The presence of
the new term is shown to be crucial for having the factorization invariance of
the regularized partition function. In the non interacting case, the
relativistic Bose-Einstein condensation is revisited. By means of a suitable
charge renormalization, for D=4 the symmetry breaking phase is shown to be
unaffected by the new term, which, however, gives actually rise to a non
vanishing new contribution in the unbroken phase.Comment: 25 pages, RevTex, a new Section and several explanations added
concering the non-commutative residue and the physical discussio
Decoupling Properties of MSSM particles in Higgs and Top Decays
We study the supersymmetric (SUSY) QCD radiative corrections, at the one-loop
level, to , and t quark decays, in the context of the Minimal
Supersymmetric Standard Model (MSSM) and in the decoupling limit. The
decoupling behaviour of the various MSSM sectors is analyzed in some special
cases, where some or all of the SUSY mass parameters become large as compared
to the electroweak scale. We show that in the decoupling limit of both large
SUSY mass parameters and large CP-odd Higgs mass, the decay width approaches its Standard Model value at one loop, with the onset
of decoupling being delayed for large values. However, this
decoupling does not occur if just the SUSY mass parameters are taken large. A
similar interesting non-decoupling behaviour, also enhanced by , is
found in the SUSY-QCD corrections to the decay width
at one loop. In contrast, the SUSY-QCD corrections in the
decay width do decouple and this decoupling is fast.Comment: 19 pages, 10 figures. Invited talk presented by M.J.Herrero at the
5th International Symposium on Radiative Corrections (RADCOR 2000) Carmel CA,
USA, 11-15 September, 200
Charginos and Neutralinos Production at 3-3-1 Supersymmetric Model in Scattering
The goal of this article is to derive the Feynman rules involving charginos,
neutralinos, double charged gauge bosons and sleptons in a 3-3-1 supersymmetric
model. Using these Feynman rules we will calculate the production of a double
charged chargino with a neutralino and also the production of a pair of single
charged charginos, both in an electron- electron process.Comment: 18 pages, 8 figures, 2 table
Radiative Corrections to the Vertex and Constraints on Extended Higgs Sectors
We explore the radiative corrections to the process in
models with extended Higgs sectors. The observables and the coupling asymmetry, , are sensitive to these corrections. We
present general formulae for the one-loop corrections to and in an
arbitrary extended Higgs sector, and derive explicit results for a number of
specific models. We find that in models containing only doublets, singlets, or
larger multiplets constrained by a custodial symmetry so that at tree level, the one-loop corrections due to virtual
charged Higgs bosons always worsen agreement with experiment. The
measurement can be used to set lower bounds on the charged Higgs masses.
Constraints on models due to the one-loop contributions of neutral Higgs bosons
are also examined.Comment: 54 pages, 11 figure
- …