362 research outputs found
Haldane phase in one-dimensional topological Kondo insulators
We investigate the groundstate properties of a recently proposed model for a
topological Kondo insulator in one dimension (i.e., the -wave
Kondo-Heisenberg lattice model) by means of the Density Matrix Renormalization
Group method. The non-standard Kondo interaction in this model is different
from the usual (i.e., local) Kondo interaction in that the localized spins
couple to the "-wave" spin density of conduction electrons, inducing a
topologically non-trivial insulating groundstate. Based on the analysis of the
charge- and spin-excitation gaps, the string order parameter, and the spin
profile in the groundstate, we show that, at half-filling and low energies, the
system is in the Haldane phase and hosts topologically protected spin-1/2
end-states. Beyond its intrinsic interest as a useful "toy-model" to understand
the effects of strong correlations on topological insulators, we show that the
-wave Kondo-Heisenberg model can be implemented in band optical lattices
loaded with ultra-cold Fermi gases.Comment: 8 pages, 4 figures, 1 appendi
From spinons to magnons in explicit and spontaneously dimerized antiferromagnetic chains
We reconsider the excitation spectra of a dimerized and frustrated
antiferromagnetic Heisenberg chain. This model is taken as the simpler example
of compiting spontaneous and explicit dimerization relevant for Spin-Peierls
compounds. The bosonized theory is a two frequency Sine-Gordon field theory. We
analize the excitation spectrum by semiclassical methods. The elementary
triplet excitation corresponds to an extended magnon whose radius diverge for
vanishing dimerization. The internal oscilations of the magnon give rise to a
series of excited state until another magnon is emited and a two magnon
continuum is reached. We discuss, for weak dimerization, in which way the
magnon forms as a result of a spinon-spinon interaction potential.Comment: 5 pages, latex, 3 figures embedded in the tex
Excitations with fractional spin less than 1/2 in frustrated magnetoelastic chains
We study the magnetic excitations on top of the plateaux states recently
discovered in spin-Peierls systems in a magnetic field. We show by means of
extensive density matrix renormalization group (DMRG) computations and an
analytic approach that one single spin-flip on top of
() plateau decays into elementary excitations each carrying a
fraction of the spin. This fractionalization goes beyond the
well-known decay of one magnon into two spinons taking place on top of the M=0
plateau. Concentrating on the plateau (N=3) we unravel the
microscopic structure of the domain walls which carry fractional
spin-, both from theory and numerics. These excitations are shown to
be noninteracting and should be observable in x-ray and nuclear magnetic
resonance experiments.Comment: 6 pages, 5 figures. Accepted to be published in Phys. Rev.
Polaron Formation in the Three-Band Peierls-Hubbard Model for Cuprate Superconductors
Exact diagonalization calculations show a continuous transition from
delocalized to small polaron behavior as a function of intersite
electron-lattice coupling. A transition, found previously at Hartree-Fock level
[Yonemitsu et al., Phys. Rev. Lett. {\bf 69}, 965 (1992)], between a magnetic
and a non magnetic state does not subsist when fluctuations are included. Local
phonon modes become softer close to the polaron and by comparison with optical
measurements of doped cuprates we conclude that they are close to the
transition region between polaronic and non-polaronic behavior. The barrier to
adiabatically move a hole vanishes in that region suggesting large mobilities.Comment: 7 pages + 3 poscript figures, Revtex 3.0, MSC-199
Domain excitations in spin-Peierls systems
We study a model of a Spin-Peierls material consisting of a set of
antiferromagnetic Heisenberg chains coupled with phonons and interacting among
them via an inter-chain elastic coupling. The excitation spectrum is analyzed
by bosonization techniques and the self-harmonic approximation. The elementary
excitation is the creation of a localized domain structure where the dimerized
order is the opposite to the one of the surroundings. It is a triplet
excitation whose formation energy is smaller than the magnon gap. Magnetic
internal excitations of the domain are possible and give the further
excitations of the system. We discuss these results in the context of recent
experimental measurements on the inorganic Spin-Peierls compound CuGeOComment: 5 pages, 2 figures, corrected version to appear in Phys. Rev.
On the Path Integral Representation for Spin Systems
We propose a classical constrained Hamiltonian theory for the spin. After the
Dirac treatment we show that due to the existence of second class constraints
the Dirac brackets of the proposed theory represent the commutation relations
for the spin. We show that the corresponding partition function, obtained via
the Fadeev-Senjanovic procedure, coincides with the one obtained using coherent
states. We also evaluate this partition function for the case of a single spin
in a magnetic field.Comment: To be published in J.Phys. A: Math. and Gen. Latex file, 12 page
Microscopic theory for the incommensurate transition in TiOCl
We propose a microscopic mechanism for the incommensurate phase in TiOX
compounds. The model includes the antiferromagnetic chains of Ti ions immersed
in the phonon bath of the bilayer structure. Making use of the Cross-Fisher
theory, we show that the geometrically frustrated character of the lattice is
responsible for the structural instability which leads the chains to an
incommensurate phase without an applied magnetic field. In the case of TiOCl,
we show that our model is consistent with the measured phonon frequencies at
and the value of the incommensuration vector at the transition
temperature. Moreover, we find that the dynamical structure factor shows a
progressive softening of an incommensurate phonon near the zone boundary as the
temperature decreases. This softening is accompanied by a broadening of the
peak which gets asymmetrical as well when going towards the transition
temperature. These features are in agreement with the experimental inelastic
X-ray measurements.Comment: 6 pages, 5 figures. Published versio
On the soliton width in the incommensurate phase of spin-Peierls systems
We study using bosonization techniques the effects of frustration due to
competing interactions and of the interchain elastic couplings on the soliton
width and soliton structure in spin-Peierls systems. We compare the predictions
of this study with numerical results obtained by exact diagonalization of
finite chains. We conclude that frustration produces in general a reduction of
the soliton width while the interchain elastic coupling increases it. We
discuss these results in connection with recent measurements of the soliton
width in the incommensurate phase of CuGeO_3.Comment: 4 pages, latex, 2 figures embedded in the tex
Antiferromagnetism in doped anisotropic two-dimensional spin-Peierls systems
We study the formation of antiferromagnetic correlations induced by impurity
doping in anisotropic two-dimensional spin-Peierls systems. Using a mean-field
approximation to deal with the inter-chain magnetic coupling, the intra-chain
correlations are treated exactly by numerical techniques. The magnetic coupling
between impurities is computed for both adiabatic and dynamical lattices and is
shown to have an alternating sign as a function of the impurity-impurity
distance, hence suppressing magnetic frustration. An effective model based on
our numerical results supports the coexistence of antiferromagnetism and
dimerization in this system.Comment: 5 pages, 4 figures; final version to appear in Phys. Rev.
- …