1 research outputs found
Bogoliubov theory of entanglement in a Bose-Einstein condensate
We consider a Bose-Einstein condensate which is illuminated by a short
resonant light pulse that coherently couples two internal states of the atoms.
We show that the subsequent time evolution prepares the atoms in an interesting
entangled state called a spin squeezed state. This evolution is analysed in
detail by developing a Bogoliubov theory which describes the entanglement of
the atoms. Our calculation is a consistent expansion in , where
is the number of particles in the condensate, and our theory predict that it is
possible to produce spin squeezing by at least a factor of . Within
the Bogoliubov approximation this result is independent of temperature.Comment: 14 pages, including 5 figures, minor changes in the presentatio