28 research outputs found

    Application of Parahydrogen-Induced Polarization to Unprotected Dehydroamino Carboxylic Acids

    No full text
    One focus of current nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) investigation is the hyperpolarization of biologically relevant substrates. In this study, the application of parahydrogen-induced polarization (PHIP) to amino carboxylic acids was enabled by protonation of the amino group as well as of the carboxylic acid. Due to the donor character of these functional groups, they usually act as ligands at the active catalytic sites. To enable parahydrogenation, blocking of the catalytic sites by the functional groups has to be avoided. In a new approach, this was realized via protonation of the starting material. For the first time PHIP spectra of allylglycine, vigabatrin and gamma-amino-butyric acid (GABA) were generated. The feasibility of the hydrogenation of amino carboxylic acids without using a protection group supersedes the deprotection reaction usually required. Hence, hydrogenation after protonation of the substrate opens the class of free dehydroamino carboxylic acids to PHIP

    Parahydrogen induced polarization in face of keto-enol tautomerism: proof of concept with hyperpolarized ethanol

    No full text
    Hyperpolarization (HP) techniques are increasingly important in magnetic resonance imaging (MRI) and spectroscopy (MRS). HP methods have the potential to overcome the fundamentally low sensitivity of magnetic resonance (MR). A breakthrough of HP-MR in life sciences and medical applications is still limited by the small number of accessible, physiologically relevant substrates. Our study presents a new approach to extend PHIP to substrates that primarily cannot be hyperpolarized due to a steady intramolecular re-arrangement, the so-called keto-enol tautomerism. To overcome this obstacle we exploited the fact that instead of the instable enol form the corresponding stable ester can be used as a precursor molecule. This strategy now enables the hydrogenation which is required to apply the standard PHIP procedure. As the final step a hydrolysis is necessary to release the hyperpolarized target molecule. Using this new approach ethanol was successfully hyperpolarized for the first time. It may therefore be assumed that the outlined multi-step procedure can be used for other keto-enol tautomerized substances thereby opening the application of PHIP to a multitude of molecules relevant to analyzing metabolic pathways

    Synthesis, Solid-State NMR Characterization, and Application for Hydrogenation Reactions of a Novel Wilkinson's-Type Immobilized Catalyst

    No full text
    Silica nanoparticles (SiNPs) were chosen as a solid support material for the immobilization of a new Wilkinson's-type catalyst. In a first step, polymer molecules (poly(triphenylphosphine)ethylene (PTPPE); 4-diphenylphosphine styrene as monomer) were grafted onto the silica nanoparticles by surface-initiated photoinferter-mediated polymerization (SI-PIMP). The catalyst was then created by binding rhodium (Rh) to the polymer side chains, with RhCl(3)xH(2)O as a precursor. The triphenylphosphine units and rhodium as Rh-I provide an environment to form Wilkinson's catalyst-like structures. Employing multinuclear (P-31, Si-29, and C-13) solid-state NMR spectroscopy (SSNMR), the structure of the catalyst bound to the polymer and the intermediates of the grafting reaction have been characterized. Finally, first applications of this catalyst in hydrogenation reactions employing para-enriched hydrogen gas (PHIP experiments) and an assessment of its leaching properties are presented

    BW Vulpeculae - A coordinated campaign of photoelectric photometry from thirteen observatories

    Full text link
    This paper contains the fully reduced observational data on the Beta Cep star BW Vul, which were obtained in the summer of 1982 during an international campaign at thirteen observatories in the northern hemisphere. Useful measurements were made during a total of 486 hours. All observations have been assigned proper weights and were binned in time intervals of 90 seconds. In this manner the observations were combined into single data points which resulted in about 6000 mean differential measurements. A preliminary ephemeris for 1982 is derived, and a mean lightcurve is given. The results indicate a fair degree of stability in the shape and in the amplitude of the lightcurve. Possible variations exist in the morphology of the stillstand phenomenon
    corecore