4,480 research outputs found
Impurity in a bosonic Josephson junction: swallowtail loops, chaos, self-trapping and the poor man's Dicke model
We study a model describing identical bosonic atoms trapped in a
double-well potential together with a single impurity atom, comparing and
contrasting it throughout with the Dicke model. As the boson-impurity coupling
strength is varied, there is a symmetry-breaking pitchfork bifurcation which is
analogous to the quantum phase transition occurring in the Dicke model. Through
stability analysis around the bifurcation point, we show that the critical
value of the coupling strength has the same dependence on the parameters as the
critical coupling value in the Dicke model. We also show that, like the Dicke
model, the mean-field dynamics go from being regular to chaotic above the
bifurcation and macroscopic excitations of the bosons are observed. Overall,
the boson-impurity system behaves like a poor man's version of the Dicke model.Comment: 17 pages, 16 figure
Dicke-type phase transition in a multimode optomechanical system
We consider the "membrane in the middle" optomechanical model consisting of a
laser pumped cavity which is divided in two by a flexible membrane that is
partially transmissive to light and subject to radiation pressure. Steady state
solutions at the mean-field level reveal that there is a critical strength of
the light-membrane coupling above which there is a symmetry breaking
bifurcation where the membrane spontaneously acquires a displacement either to
the left or the right. This bifurcation bears many of the signatures of a
second order phase transition and we compare and contrast it with that found in
the Dicke model. In particular, by studying limiting cases and deriving
dynamical critical exponents using the fidelity susceptibility method, we argue
that the two models share very similar critical behaviour. For example, the
obtained critical exponents indicate that they fall within the same
universality class. Away from the critical regime we identify, however, some
discrepancies between the two models. Our results are discussed in terms of
experimentally relevant parameters and we evaluate the prospects for realizing
Dicke-type physics in these systems.Comment: 14 pages, 6 figure
Isomonodromic deformatiion with an irregular singularity and hyperelliptic curve
In this paper, we extend the result of Kitaev and Korotkin to the case where
a monodromy-preserving deformation has an irregular singularity. For the
monodromy-preserving deformation, we obtain the -function whose
deformation parameters are the positions of regular singularities and the
parameter of an irregular singularity. Furthermore, the -function is
expressed by the hyperelliptic function moving the argument \z and
the period \B, where and the positions of regular singularities move
and \B, respectively.Comment: 23 pages, 2 figure
Alternating groups and moduli space lifting Invariants
Main Theorem: Spaces of r-branch point 3-cycle covers, degree n or Galois of
degree n!/2 have one (resp. two) component(s) if r=n-1 (resp. r\ge n). Improves
Fried-Serre on deciding when sphere covers with odd-order branching lift to
unramified Spin covers. We produce Hurwitz-Torelli automorphic functions on
Hurwitz spaces, and draw Inverse Galois conclusions. Example: Absolute spaces
of 3-cycle covers with +1 (resp. -1) lift invariant carry canonical even (resp.
odd) theta functions when r is even (resp. odd). For inner spaces the result is
independent of r. Another use appears in,
http://www.math.uci.edu/~mfried/paplist-mt/twoorbit.html, "Connectedness of
families of sphere covers of A_n-Type." This shows the M(odular) T(ower)s for
the prime p=2 lying over Hurwitz spaces first studied by,
http://www.math.uci.edu/~mfried/othlist-cov/hurwitzLiu-Oss.pdf, Liu and
Osserman have 2-cusps. That is sufficient to establish the Main Conjecture: (*)
High tower levels are general-type varieties and have no rational points.For
infinitely many of those MTs, the tree of cusps contains a subtree -- a spire
-- isomorphic to the tree of cusps on a modular curve tower. This makes
plausible a version of Serre's O(pen) I(mage) T(heorem) on such MTs.
Establishing these modular curve-like properties opens, to MTs, modular
curve-like thinking where modular curves have never gone before. A fuller html
description of this paper is at
http://www.math.uci.edu/~mfried/paplist-cov/hf-can0611591.html .Comment: To appear in the Israel Journal as of 1/5/09; v4 is corrected from
proof sheets, but does include some proof simplification in \S
Ultradiscretization of the solution of periodic Toda equation
A periodic box-ball system (pBBS) is obtained by ultradiscretizing the
periodic discrete Toda equation (pd Toda eq.). We show the relation between a
Young diagram of the pBBS and a spectral curve of the pd Toda eq.. The formula
for the fundamental cycle of the pBBS is obtained as a colloraly.Comment: 41 pages; 7 figure
Notes on Euclidean Wilson loops and Riemann Theta functions
The AdS/CFT correspondence relates Wilson loops in N=4 SYM theory to minimal
area surfaces in AdS5 space. In this paper we consider the case of Euclidean
flat Wilson loops which are related to minimal area surfaces in Euclidean AdS3
space. Using known mathematical results for such minimal area surfaces we
describe an infinite parameter family of analytic solutions for closed Wilson
loops. The solutions are given in terms of Riemann theta functions and the
validity of the equations of motion is proven based on the trisecant identity.
The world-sheet has the topology of a disk and the renormalized area is written
as a finite, one-dimensional contour integral over the world-sheet boundary. An
example is discussed in detail with plots of the corresponding surfaces.
Further, for each Wilson loops we explicitly construct a one parameter family
of deformations that preserve the area. The parameter is the so called spectral
parameter. Finally, for genus three we find a map between these Wilson loops
and closed curves inside the Riemann surface.Comment: 35 pages, 7 figures, pdflatex. V2: References added. Typos corrected.
Some points clarifie
Semiclassical Strings in AdS_5 x S^5 and Automorphic Functions
Using AdS/CFT we derive from the folded spinning string ordinary differential
equations for the anomalous dimension of the dual N=4 SYM twist-two operators
at strong coupling. We show that for large spin the asymptotic solutions have
the Gribov-Lipatov recirocity property. To obtain this result we use a hidden
modular invariance of the energy-spin relation of the folded spinning string.
Further we identify the Moch-Vermaseren-Vogt (MVV) relations, which were first
recognized in plain QCD calculations, as the recurrence relations of the
asymptotic series ansatz.Comment: 4 page
Impurity in a Bose-Einstein condensate in a double well
We compare and contrast the mean-field and many-body properties of a
Bose-Einstein condensate trapped in a double well potential with a single
impurity atom. The mean-field solutions display a rich structure of
bifurcations as parameters such as the boson-impurity interaction strength and
the tilt between the two wells are varied. In particular, we study a pitchfork
bifurcation in the lowest mean-field stationary solution which occurs when the
boson-impurity interaction exceeds a critical magnitude. This bifurcation,
which is present for both repulsive and attractive boson-impurity interactions,
corresponds to the spontaneous formation of an imbalance in the number of
particles between the two wells. If the boson-impurity interaction is large,
the bifurcation is associated with the onset of a Schroedinger cat state in the
many-body ground state. We calculate the coherence and number fluctuations
between the two wells, and also the entanglement entropy between the bosons and
the impurity. We find that the coherence can be greatly enhanced at the
bifurcation.Comment: 19 pages, 17 figures. The second version contains minor corrections
and some better figures (thicker lines
Do it Right or Not at All: A Longitudinal Evaluation of a Conflict Managment System Implementation
We analyzed an eight-year multi-source longitudinal data set that followed a healthcare system in the Eastern United States as it implemented a major conflict management initiative to encourage line managers to consistently perform Personal Management Interviews (or PMIs) with their employees. PMIs are interviews held between two individuals, designed to prevent or quickly resolve interpersonal problems before they escalate to formal grievances. This initiative provided us a unique opportunity to empirically test key predictions of Integrated Conflict Management System (or ICMS) theory. Analyzing survey and personnel file data from 5,449 individuals from 2003 to 2010, we found that employees whose managers provided high-quality interviews perceived significantly higher participative work climates and had lower turnover rates. However, retention was worse when managers provided poor-quality interviews than when they conducted no interviews at all. Together these findings highlight the critical role that line mangers play in the success of conflict management systems
- …