18 research outputs found

    Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species-rich clades

    No full text
    The Leguminosae, the third-largest angiosperm family, has a global distribution and high ecological and economic importance. We examine how the legume systematic research community might join forces to produce a comprehensive phylogenetic estimate for the ca. 751 genera and ca. 19,500 species of legumes and then translate it into a phylogeny-based classification. We review the current state of knowledge of legume phylogeny and highlight where problems lie, for example in taxon sampling and phylogenetic resolution. We review approaches from bioinformatics and next-generation sequencing, which can facilitate the production of better phylogenetic estimates. Finally, we examine how morphology can be incorporated into legume phylogeny to address issues in comparative biology and classification. Our goal is to stimulate the research needed to improve our knowledge of legume phylogeny and evolution; the approaches that we discuss may also be relevant to other species-rich angiosperm clade

    Using the ratio: maximum load over unload stiffness squared, Pm/Su², on the evaluation of machine stiffness and area function of blunt indenters on depth-sensing indentation equipment

    No full text
    Depth sensing indentation study was conducted in a Fischerscope H100V machine, equipped with a Vickers indenter with a tip roundness of approximately 1330 nm. Tests were carried out on soda-lime glass, fused silica, sapphire, aluminum (1100 alloy), high alloyed steel, titanium and copper. The widely used iterative method of Oliver and Pharr was unsuccessful in the attempts to analyze machine compliance and indenter area function. Therefore, an alternative procedure was adopted. The alternative procedure is based on the ratio between maximum load and unload stiffness squared, Pm/Su². It was found that this procedure, which is not iterative, gives good results. A careful study of the Pm/Su² ratio, lead us to conclude that the Fischercope machine has a low compliance which depends on the sample mounting. This low compliance in conjunction with the recent discovery of the dependence of beta factor on the tip roundness/maximum depth ratio, which appears in the relation between contact stiffness and contact area, explains why the iterative method does not converge. However, variations in beta and machine compliance produces deviation on the hardness and elastic modulus lower that 6% with respect to expected values for the materials and the machine studied in this work
    corecore