319 research outputs found

    From Bad to Good: Fitness Reversals and the Ascent of Deleterious Mutations

    Get PDF
    Deleterious mutations are considered a major impediment to adaptation, and there are straightforward expectations for the rate at which they accumulate as a function of population size and mutation rate. In a simulation model of an evolving population of asexually replicating RNA molecules, initially deleterious mutations accumulated at rates nearly equal to that of initially beneficial mutations, without impeding evolutionary progress. As the mutation rate was increased within a moderate range, deleterious mutation accumulation and mean fitness improvement both increased. The fixation rates were higher than predicted by many population-genetic models. This seemingly paradoxical result was resolved in part by the observation that, during the time to fixation, the selection coefficient (s) of initially deleterious mutations reversed to confer a selective advantage. Significantly, more than half of the fixations of initially deleterious mutations involved fitness reversals. These fitness reversals had a substantial effect on the total fitness of the genome and thus contributed to its success in the population. Despite the relative importance of fitness reversals, however, the probabilities of fixation for both initially beneficial and initially deleterious mutations were exceedingly small (on the order of 10(−5) of all mutations)

    Thermodynamics of the Adiabatic Expansion of a Mixture of Two Phases

    Get PDF
    The thermodynamics of the adiabatic expansion of a mixture of two phases capable of interchanging heat and matter across the phase boundary is presented. The law of conservation of energy is applied to each phase considered as an open system and to the mixture of phases considered as a closed system. Expressions for the entropy production resulting from internal irreversible processes demonstrate the difference between adiabatic and isentropic changes and specify conditions under which the expansion of a closed two-phase system is isentropic. Three such possible isentropic processes are defined, and expressions are derived for the temperature-pressure-volume states achieved in them. The thermodynamic treatment is useful in studies of the adiabatic release of a shock-induced mixture of phases

    Thermodynamics of the Adiabatic Expansion of a Mixture of Two Phases

    Full text link

    Spitzer Space Telescope Infrared Observations of the Binary Neutron Star Merger GW170817

    Full text link
    We present Spitzer Space Telescope 3.6 and 4.5 micron observations of the binary neutron star merger GW170817 at 43, 74, and 264 days post-merger. Using the final observation as a template, we uncover a source at the position of GW170817 at 4.5 micron with a brightness of 22.9+/-0.3 AB mag at 43 days and 23.8+/-0.3 AB mag at 74 days (the uncertainty is dominated by systematics from the image subtraction); no obvious source is detected at 3.6 micron to a 3-sigma limit of >23.3 AB mag in both epochs. The measured brightness is dimmer by a factor of about 2-3 times compared to our previously published kilonova model, which is based on UV, optical, and near-IR data at <30 days. However, the observed fading rate and color (m_{3.6}-m_{4.5}> 0 AB mag) are consistent with our model. We suggest that the discrepancy is likely due to a transition to the nebular phase, or a reduced thermalization efficiency at such late time. Using the Spitzer data as a guide, we briefly discuss the prospects of observing future binary neutron star mergers with Spitzer (in LIGO/Virgo Observing Run 3) and the James Webb Space Telescope (in LIGO/Virgo Observing Run 4 and beyond).Comment: 6 pages, 2 figures, submitted to ApJ

    Improved constraints on H0 from a combined analysis of gravitational-wave and electromagnetic emission from GW170817

    Full text link
    The luminosity distance measurement of GW170817 derived from GW analysis in Abbott et al. 2017 (here, A17:H0) is highly correlated with the measured inclination of the NS-NS system. To improve the precision of the distance measurement, we attempt to constrain the inclination by modeling the broad-band X-ray-to-radio emission from GW170817, which is dominated by the interaction of the jet with the environment. We update our previous analysis and we consider the radio and X-ray data obtained at t<40t<40 days since merger. We find that the afterglow emission from GW170817 is consistent with an off-axis relativistic jet with energy 1048erg<Ek3×1050erg10^{48}\,\rm{erg}<E_{k}\le 3\times 10^{50} \,\rm{erg} propagating into an environment with density n102104cm3n\sim10^{-2}-10^{-4} \,\rm{cm^{-3}}, with preference for wider jets (opening angle θj=15\theta_j=15 deg). For these jets, our modeling indicates an off-axis angle θobs2550\theta_{\rm obs}\sim25-50 deg. We combine our constraints on θobs\theta_{\rm obs} with the joint distance-inclination constraint from LIGO. Using the same 170\sim 170 km/sec peculiar velocity uncertainty assumed in A17:H0 but with an inclination constraint from the afterglow data, we get a value of H0=H_0=74.0±11.57.574.0 \pm \frac{11.5}{7.5} \mbox{km/s/Mpc}, which is higher than the value of H0=H_0=70.0±12.08.070.0 \pm \frac{12.0}{8.0} \mbox{km/s/Mpc} found in A17:H0. Further, using a more realistic peculiar velocity uncertainty of 250 km/sec derived from previous work, we find H0=H_0=75.5±11.69.675.5 \pm \frac{11.6}{9.6} km/s/Mpc for H0 from this system. We note that this is in modestly better agreement with the local distance ladder than the Planck CMB, though a significant such discrimination will require 50\sim 50 such events. Future measurements at t>100t>100 days of the X-ray and radio emission will lead to tighter constraints.Comment: Submitted to ApJL. Comments Welcome. Revised uncertainties in v

    The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. V. Rising X-ray Emission from an Off-Axis Jet

    Full text link
    We report the discovery of rising X-ray emission from the binary neutron star (BNS) merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave source. Observations acquired with the Chandra X-ray Observatory (CXO) at t~2.3 days post merger reveal no significant emission, with L_x<=3.2x10^38 erg/s (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching L_x\sim 9x10^39 erg/s at ~15.1 days post merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broad-band X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy E_k~10^49-10^50 erg, viewed off-axis with theta_obs~ 20-40 deg. Our models favor a circumbinary density n~ 0.0001-0.01 cm-3, depending on the value of the microphysical parameter epsilon_B=10^{-4}-10^{-2}. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at t100t\gtrsim 100 days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on theta_obs are testable with gravitational wave information on GW170817 from Advanced LIGO/Virgo on the binary inclination.Comment: 7 Pages, 4 Figures, ApJL, In Press. Keywords: GW170817, LV

    A Decline in the X-ray through Radio Emission from GW170817 Continues to Support an Off-Axis Structured Jet

    Full text link
    We present new observations of the binary neutron star merger GW170817 at Δt220290\Delta t\approx 220-290 days post-merger, at radio (Karl G. Jansky Very Large Array; VLA), X-ray (Chandra X-ray Observatory) and optical (Hubble Space Telescope; HST) wavelengths. These observations provide the first evidence for a turnover in the X-ray light curve, mirroring a decline in the radio emission at 5σ\gtrsim5\sigma significance. The radio-to-X-ray spectral energy distribution exhibits no evolution into the declining phase. Our full multi-wavelength dataset is consistent with the predicted behavior of our previously published models of a successful structured jet expanding into a low-density circumbinary medium, but pure cocoon models with a choked jet cannot be ruled out. If future observations continue to track our predictions, we expect that the radio and X-ray emission will remain detectable until 1000\sim 1000 days post-merger.Comment: Accepted to ApJL. Updated version includes new VLA observations extending through 2018 June

    The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale

    Full text link
    We present the properties of NGC 4993, the host galaxy of GW170817, the first gravitational wave (GW) event from the merger of a binary neutron star (BNS) system and the first with an electromagnetic (EM) counterpart. We use both archival photometry and new optical/near-IR imaging and spectroscopy, together with stellar population synthesis models to infer the global properties of the host galaxy. We infer a star formation history peaked at 10\gtrsim 10 Gyr ago, with subsequent exponential decline leading to a low current star formation rate of 0.01 M_{\odot} yr1^{-1}, which we convert into a binary merger timescale probability distribution. We find a median merger timescale of 11.21.4+0.711.2^{+0.7}_{-1.4} Gyr, with a 90% confidence range of 6.813.66.8-13.6 Gyr. This in turn indicates an initial binary separation of 4.5\approx 4.5 R_{\odot}, comparable to the inferred values for Galactic BNS systems. We also use new and archival HubbleHubble SpaceSpace TelescopeTelescope images to measure a projected offset of the optical counterpart of 2.12.1 kpc (0.64rer_{e}) from the center of NGC 4993 and to place a limit of Mr7.2M_{r} \gtrsim -7.2 mag on any pre-existing emission, which rules out the brighter half of the globular cluster luminosity function. Finally, the age and offset of the system indicates it experienced a modest natal kick with an upper limit of 200\sim 200 km s1^{-1}. Future GW-EM observations of BNS mergers will enable measurement of their population delay time distribution, which will directly inform their viability as the dominant source of rr-process enrichment in the Universe.Comment: 9 Pages, 3 Figures, 2 Tables, ApJL, In Press. Keywords: GW170817, LV
    corecore