8,399 research outputs found

    Flux reversal in a simple random walk model on a fluctuating symmetric lattice

    Get PDF
    A rather simple random walk model on a one-dimensional lattice is put forward. The lattice as a whole switches randomly between two possible states which are spatially symmetric. Both lattice states are identical, but translated by one site with respect to each other, and consist of infinite arrays of absorbing sites separated by two non-absorbing sites. Exact explicit expressions for the long-time velocity and the effective diffusion coefficient are obtained and discussed. In particular, it is shown that the direction of the steady motion can be reversed by conveniently varying the values of either the mean residence times in the lattice states or the transition rates to the absorbing and non-absorbing sites.Comment: 6 pages, 3 Figures, (to appear in Physical Review E

    Statistical Mechanics of finite arrays of coupled bistable elements

    Get PDF
    We discuss the equilibrium of a single collective variable characterizing a finite set of coupled, noisy, bistable systems as the noise strength, the size and the coupling parameter are varied. We identify distinct regions in parameter space. The results obtained in prior works in the asymptotic infinite size limit are significantly different from the finite size results. A procedure to construct approximate 1-dimensional Langevin equation is adopted. This equation provides a useful tool to understand the collective behavior even in the presence of an external driving force

    Wigner representation for polarization-momentum hyperentanglement generated in parametric down conversion, and its application to complete Bell-state measurement

    Full text link
    We apply the Wigner function formalism to the study of two-photon polarization-momentum hyperentanglement generated in parametric down conversion. It is shown that the consideration of a higher number of degrees of freedom is directly related to the extraction of additional uncorrelated sets of zeropoint modes at the source. We present a general expression for the description of the quantum correlations corresponding to the sixteen Bell base states, in terms of four beams whose amplitudes are correlated through the stochastic properties of the zeropoint field. A detailed analysis of the two experiments on complete Bell-state measurement included in [Walborn et al., Phys. Rev. A 68, 042313 (2003)] is made, emphasizing the role of the zeropoint field. Finally, we investigate the relationship between the zeropoint inputs at the source and the analysers, and the limits on optimal Bell-state measurement.Comment: 28 pages, 4 figure

    Partial Bell-state analysis with parametric down conversion in the Wigner function formalism

    Get PDF
    We apply the Wigner function formalism to partial Bell-state analysis using polarization entanglement produced in parametric down conversion. Two-photon statistics at a beam-splitter are reproduced by a wavelike description with zeropoint fluctuations of the electromagnetic field. In particular, the fermionic behaviour of two photons in the singlet state is explained from the invariance on the correlation properties of two light beams going through a balanced beam-splitter. Moreover, we show that a Bell-state measurement introduces some fundamental noise at the idle channels of the analyzers. As a consequence, the consideration of more independent sets of vacuum modes entering the crystal appears as a need for a complete Bell-state analysis

    Stochastic resonance with weak monochromatic driving: gains above unity induced by high-frequency signals

    Get PDF
    We study the effects of a high-frequency (HF) signal on the response of a noisy bistable system to a low-frequency subthreshold sinusoidal signal. We show that, by conveniently choosing the ratio of the amplitude of the HF signal to its frequency, stochastic resonance gains greater than unity can be measured at the low-frequency value. Thus, the addition of the HF signal can entail an improvement in the detection of weak monochromatic signals. The results are explained in terms of an effective model and illustrated by means of numerical simulations.Comment: 5 pages, 2 figure
    corecore