575 research outputs found

    Cotunneling signatures of Spin-Electric coupling in frustrated triangular molecular magnets

    Full text link
    The ground state of frustrated (antiferromagnetic) triangular molecular magnets is characterized by two total-spin S=1/2S =1/2 doublets with opposite chirality. According to a group theory analysis [M. Trif \textit{et al.}, Phys. Rev. Lett. \textbf{101}, 217201 (2008)] an external electric field can efficiently couple these two chiral spin states, even when the spin-orbit interaction (SOI) is absent. The strength of this coupling, dd, is determined by an off-diagonal matrix element of the dipole operator, which can be calculated by \textit{ab-initio} methods [M. F. Islam \textit{et al.}, Phys. Rev. B \textbf{82}, 155446 (2010)]. In this work we propose that Coulomb-blockade transport experiments in the cotunneling regime can provide a direct way to determine the spin-electric coupling strength. Indeed, an electric field generates a dd-dependent splitting of the ground state manifold, which can be detected in the inelastic cotunneling conductance. Our theoretical analysis is supported by master-equation calculations of quantum transport in the cotunneling regime. We employ a Hubbard-model approach to elucidate the relationship between the Hubbard parameters tt and UU, and the spin-electric coupling constant dd. This allows us to predict the regime in which the coupling constant dd can be extracted from experiment

    Gamma–ray spectroscopy with single–carrier collection in high–resistivity semiconductors

    Get PDF
    With the standard plane–parallel configuration of semiconductor detectors, good γ–ray spectra can only be obtained when both electrons and holes are completely collected. We show by calculations (and experiments) that with contacts of hemispherical configuration one can obtain γ–ray spectra of adequate resolution and with signal heights of nearly full amplitude even when only one type of carrier is collected. Experiments with CdTe detectors for which the ”τ product for electrons is about 10^(3) times that of the holes confirm these calculations. The adoption of hemispherical contacts thus widens the range of high–resistivity semiconductors potentially acceptable for γ–ray detection at room temperature

    Magnetic Anisotropy of Isolated Cobalt Nanoplatelets

    Full text link
    Motivated in part by experiments performed by M.H. Pan et al. (nanoletters, v.5, p 83, 2005), we have undertaken a theoretical study of the the magnetic properties of two-monolayer thick Co nanoplatelets with an equilateral triangular shape. The analysis is carried out using a microscopic Slater-Koster tight-binding model with atomic exchange and spin-orbit interactions designed to realistically capture the salient magnetic features of large nanoclusters containing up to 350 atoms. Two different truncations of the FCC lattice are studied, in which the nanoplatelet surface is aligned parallel to the FCC (111) and (001)crystal planes respectively. We find that the higher coordination number in the (111) truncated crystal is more likely to reproduce the perpendicular easy direction found in experiment. Qualitatively, the most important parameter governing the anisotropy of the model is found to be the value of the intra-atomic exchange integral J. If we set the value of J near the bulk value in order to reproduce the experimentally observed magnitude of the magnetic moments, we find both quasi-easy-planes and perpendicular easy directions. At larger values of J we find that the easy-axis of magnetization is perpendicular to the surface, and the value of the magnetic anisotropy energy per atom is larger. The possible role of hybridization with substrate surface states in the experimental systems is discussed.Comment: 15 pages, 13 figure

    Spectral properties of a generalized chGUE

    Full text link
    We consider a generalized chiral Gaussian Unitary Ensemble (chGUE) based on a weak confining potential. We study the spectral correlations close to the origin in the thermodynamic limit. We show that for eigenvalues separated up to the mean level spacing the spectral correlations coincide with those of chGUE. Beyond this point, the spectrum is described by an oscillating number variance centered around a constant value. We argue that the origin of such a rigid spectrum is due to the breakdown of the translational invariance of the spectral kernel in the bulk of the spectrum. Finally, we compare our results with the ones obtained from a critical chGUE recently reported in the literature. We conclude that our generalized chGUE does not belong to the same class of universality as the above mentioned model.Comment: 12 pages, 3 figure

    Antimony doping of Si layers grown by solid-phase epitaxy

    Get PDF
    We report here that layers of Si formed by solid-phase epitaxial growth (SPEG) can be doped intentionally. The sample consists initially of an upper layer of amorphous Si (~1 ”m thick), a very thin intermediate layer of Sb (nominally 5 Å), and a thin lower layer of Pd (~500 Å), all electron-gun deposited on top of a single-crystal substrate (1–10 Ω cm, p type, orientation). After a heating cycle which induces epitaxial growth, electrically active Sb atoms are incorporated into the SPEG layer, as shown by the following facts: (a) the SPEG layer forms a p-n junction against the p-type substrate, (b) the Hall effect indicates strong n-type conduction of the layer, and (c) Auger electron spectra reveal the presence of Sb in the layer

    A new application of emulsions to measure the gravitational force on antihydrogen

    Full text link
    We propose to build and operate a detector based on the emulsion film technology for the measurement of the gravitational acceleration on antimatter, to be performed by the AEgIS experiment (AD6) at CERN. The goal of AEgIS is to test the weak equivalence principle with a precision of 1% on the gravitational acceleration g by measuring the vertical position of the anni- hilation vertex of antihydrogen atoms after their free fall in a horizontal vacuum pipe. With the emulsion technology developed at the University of Bern we propose to improve the performance of AEgIS by exploiting the superior position resolution of emulsion films over other particle de- tectors. The idea is to use a new type of emulsion films, especially developed for applications in vacuum, to yield a spatial resolution of the order of one micron in the measurement of the sag of the antihydrogen atoms in the gravitational field. This is an order of magnitude better than what was planned in the original AEgIS proposal.Comment: 17 pages, 14 figure

    New Class of Random Matrix Ensembles with Multifractal Eigenvectors

    Full text link
    Three recently suggested random matrix ensembles (RME) are linked together by an exact mapping and plausible conjections. Since it is known that in one of these ensembles the eigenvector statistics is multifractal, we argue that all three ensembles belong to a new class of critical RME with multifractal eigenfunction statistics and a universal critical spectral statitics. The generic form of the two-level correlation function for weak and extremely strong multifractality is suggested. Applications to the spectral statistics at the Anderson transition and for certain systems on the border of chaos and integrability is discussed.Comment: 4 pages RevTeX, resubmitte

    Coulomb correlations and coherent charge tunneling in mesoscopic coupled rings

    Full text link
    We study the effect of a strong electron-electron (e-e) interaction in a system of two concentric one-dimensional rings with incommensurate areas A_1 and A_2, coupled by a tunnel amplitude. For noninteracting particles the magnetic moment (persistent current) m of the many-body ground state and first excited states is an irregular function of the external magnetic field. In contrast, we show that when strong e-e interactions are present the magnetic field dependence of m becomes periodic. In such a strongly correlated system disorder can only be caused by inter-ring charge fluctuations, controllable by a gate voltage. The oscillation period of m is proportional to 1/(A_1 + A_2) if fluctuations are suppressed. Coherent inter-ring tunneling doubles the period when charge fluctuations are allowed.Comment: 4 pages, 4 eps figure

    Distribution of level curvatures for the Anderson model at the localization-delocalization transition

    Full text link
    We compute the distribution function of single-level curvatures, P(k)P(k), for a tight binding model with site disorder, on a cubic lattice. In metals P(k)P(k) is very close to the predictions of the random-matrix theory (RMT). In insulators P(k)P(k) has a logarithmically-normal form. At the Anderson localization-delocalization transition P(k)P(k) fits very well the proposed novel distribution P(k)∝(1+kÎŒ)3/ÎŒP(k)\propto (1+k^{\mu})^{3/\mu} with Ό≈1.58\mu \approx 1.58, which approaches the RMT result for large kk and is non-analytical at small kk. We ascribe such a non-analiticity to the spatial multifractality of the critical wave functions.Comment: 4 ReVTeX pages and 4(.epsi)figures included in one uuencoded packag
    • 

    corecore