4,305 research outputs found

    Spin texture on the Fermi surface of tensile strained HgTe

    Get PDF
    We present ab initio and k.p calculations of the spin texture on the Fermi surface of tensile strained HgTe, which is obtained by stretching the zincblende lattice along the (111) axis. Tensile strained HgTe is a semimetal with pointlike accidental degeneracies between a mirror symmetry protected twofold degenerate band and two nondegenerate bands near the Fermi level. The Fermi surface consists of two ellipsoids which contact at the point where the Fermi level crosses the twofold degenerate band along the (111) axis. However, the spin texture of occupied states indicates that neither ellipsoid carries a compensating Chern number. Consequently, the spin texture is locked in the plane perpendicular to the (111) axis, exhibits a nonzero winding number in that plane, and changes winding number from one end of the Fermi ellipsoids to the other. The change in the winding of the spin texture suggests the existence of singular points. An ordered alloy of HgTe with ZnTe has the same effect as stretching the zincblende lattice in the (111) direction. We present ab initio calculations of ordered Hg_xZn_1-xTe that confirm the existence of a spin texture locked in a 2D plane on the Fermi surface with different winding numbers on either end.Comment: 8 pages, 8 figure

    Dirac semimetal in three dimensions

    Get PDF
    In a Dirac semimetal, the conduction and valence bands contact only at discrete (Dirac) points in the Brillouin zone (BZ) and disperse linearly in all directions around these critical points. Including spin, the low energy effective theory around each critical point is a four band Dirac Hamiltonian. In two dimensions (2D), this situation is realized in graphene without spin-orbit coupling. 3D Dirac points are predicted to exist at the phase transition between a topological and a normal insulator in the presence of inversion symmetry. Here we show that 3D Dirac points can also be protected by crystallographic symmetries in particular space-groups and enumerate the criteria necessary to identify these groups. This reveals the possibility of 3D analogs to graphene. We provide a systematic approach for identifying such materials and present ab initio calculations of metastable \beta-cristobalite BiO_2 which exhibits Dirac points at the three symmetry related X points of the BZ.Comment: 6 pages, 4 figure

    Design of interpolative sigma-delta modulators via semi-indefinite programming

    Get PDF
    This correspondence considers the optimized design of interpolative sigma delta modulators (SDMs). The first optimization problem is to determine the denominator coefficients. The objective of the optimization problem is to minimize the passband energy of the denominator of the loop filter transfer function (excluding the dc poles) subject to the continuous constraint of this function defined in the frequency domain. The second optimization problem is to determine the numerator coefficients in which the cost function is to minimize the stopband ripple energy of the loop filter subject to the stability condition of the noise transfer function (NTF) and signal transfer function (STF). These two optimization problems are actually quadratic semi-infinite programming (SIP) problems. By employing the dual-parameterization method, global optimal solutions that satisfy the corresponding continuous constraints are guaranteed if the filter length is long enough. The advantages of this formulation are the guarantee of the stability of the transfer functions, applicability to design of rational infinite-impulse-response (IIR) filters without imposing specific filter structures, and the avoidance of iterative design of numerator and denominator coefficients. Our simulation results show that this design yields a significant improvement in the signal-to-noise ratio (SNR) and have a larger stability range, compared with the existing designs

    Topological Defects and Gapless Modes in Insulators and Superconductors

    Get PDF
    We develop a unified framework to classify topological defects in insulators and superconductors described by spatially modulated Bloch and Bogoliubov de Gennes Hamiltonians. We consider Hamiltonians H(k,r) that vary slowly with adiabatic parameters r surrounding the defect and belong to any of the ten symmetry classes defined by time reversal symmetry and particle-hole symmetry. The topological classes for such defects are identified, and explicit formulas for the topological invariants are presented. We introduce a generalization of the bulk-boundary correspondence that relates the topological classes to defect Hamiltonians to the presence of protected gapless modes at the defect. Many examples of line and point defects in three dimensional systems will be discussed. These can host one dimensional chiral Dirac fermions, helical Dirac fermions, chiral Majorana fermions and helical Majorana fermions, as well as zero dimensional chiral and Majorana zero modes. This approach can also be used to classify temporal pumping cycles, such as the Thouless charge pump, as well as a fermion parity pump, which is related to the Ising non-Abelian statistics of defects that support Majorana zero modes.Comment: 27 pages, 15 figures, Published versio

    Parafermionic edge zero modes in Z_n-invariant spin chains

    Full text link
    A sign of topological order in a gapped one-dimensional quantum chain is the existence of edge zero modes. These occur in the Z_2-invariant Ising/Majorana chain, where they can be understood using free-fermion techniques. Here I discuss their presence in spin chains with Z_n symmetry, and prove that for appropriate coupling they are exact, even in this strongly interacting system. These modes are naturally expressed in terms of parafermions, generalizations of fermions to the Z_n case. I show that parafermionic edge zero modes do not occur in the usual ferromagnetic and antiferromagnetic cases, but rather only when the interactions are chiral, so that spatial-parity and time-reversal symmetries are broken.Comment: 22 pages. v2: small changes, added reference

    The control parameterization method for nonlinear optimal control: A survey

    Get PDF
    The control parameterization method is a popular numerical technique for solving optimal control problems. The main idea of control parameterization is to discretize the control space by approximating the control function by a linear combination of basis functions. Under this approximation scheme, the optimal control problem is reduced to an approximate nonlinear optimization problem with a finite number of decision variables. This approximate problem can then be solved using nonlinear programming techniques. The aim of this paper is to introduce the fundamentals of the control parameterization method and survey its various applications to non-standard optimal control problems. Topics discussed include gradient computation, numerical convergence, variable switching times, and methods for handling state constraints. We conclude the paper with some suggestions for future research

    BTZ black hole and quantum Hall effect in the bulk/boundary dynamics

    Get PDF
    We point out an interesting analogy between the BTZ black hole and QHE (Quantum Hall effect) in the (2+1)-dimensional bulk/boundary theories. It is shown that the Chern-Simons/Liouville(Chern-Simons/chiral boson) is an effective description for the BTZ black hole (QHE). Also the IR(bulk)-UV(boundary) connection for a black hole information bound is realized as the UV(low-lying excitations on bulk)-IR(long-range excitations on boundary) connection in the QHE. An inflow of conformal anomaly(c=1c=1 central charge) onto the timelike boundary of AdS3_3 by the Noether current corresponds to an inflow of chiral anomaly onto the edge of disk by the Hall current.Comment: 8 pages, this version to appear in Phys. Rev.

    Control parameterization for optimal control problems with continuous inequality constraints: New convergence results

    Get PDF
    Control parameterization is a powerful numerical technique for solving optimal control problems with general nonlinear constraints. The main idea of control parameterization is to discretize the control space by approximating the control by a piecewise-constant or piecewise-linear function, thereby yielding an approximate nonlinear programming problem. This approximate problem can then be solved using standard gradient-based optimization techniques. In this paper, we consider the control parameterization method for a class of optimal control problems in which the admissible controls are functions of bounded variation and the state and control are subject to continuous inequality constraints. We show that control parameterization generates a sequence of suboptimal controls whose costs converge to the true optimal cost. This result has previously only been proved for the case when the admissible controls are restricted to piecewise continuous functions
    • …
    corecore