129 research outputs found
Sitting at the edge: How biomolecules use hydrophobicity to tune their interactions and function
Water near hydrophobic surfaces is like that at a liquid-vapor interface,
where fluctuations in water density are substantially enhanced compared to that
in bulk water. Here we use molecular simulations with specialized sampling
techniques to show that water density fluctuations are similarly enhanced, even
near hydrophobic surfaces of complex biomolecules, situating them at the edge
of a dewetting transition. Consequently, water near these surfaces is sensitive
to subtle changes in surface conformation, topology, and chemistry, any of
which can tip the balance towards or away from the wet state, and thus
significantly alter biomolecular interactions and function. Our work also
resolves the long-standing puzzle of why some biological surfaces dewet and
other seemingly similar surfaces do not.Comment: 12 pages, 4 figure
Water in Cavity−Ligand Recognition
We use explicit solvent molecular dynamics simulations to estimate free energy, enthalpy, and entropy changes along the cavity-ligand association coordinate for a set of seven model systems with varying physicochemical properties. Owing to the simplicity of the considered systems we can directly investigate the role of water thermodynamics in molecular recognition. A broad range of thermodynamic signatures is found in which water (rather than cavity or ligand) enthalpic or entropic contributions appear to drive cavity-ligand binding or rejection. The unprecedented, nanoscale picture of hydration thermodynamics can help the interpretation and design of protein-ligand binding experiments. Our study opens appealing perspectives to tackle the challenge of solvent entropy estimation in complex systems and for improving molecular simulation models
Modulation of the <i>Neisseria gonorrhoeae </i>drug efflux conduit MtrE
We acknowledge funding through the Wellcome Trust Interdisciplinary Research Funds (grant WT097818MF), the Scottish Universities’ Physics Alliance (SUPA), Tenovus Tayside (grant T16/30) and the Tayside Charitable Trust. O.N.V. has been funded through a BBSRC CASE award (BB/J013072/1).Widespread antibiotic resistance, especially of Gram-negative bacteria, has become a severe concern for human health. Tripartite efflux pumps are one of the major contributors to resistance in Gram-negative pathogens, by efficiently expelling a broad spectrum of antibiotics from the organism. In Neisseria gonorrhoeae, one of the first bacteria for which pan-resistance has been reported, the most expressed efflux complex is MtrCDE. Here we present the electrophysiological characterisation of the outer membrane component MtrE and the membrane fusion protein MtrC, obtained by a combination of planar lipid bilayer recordings and in silico techniques. Our in vitro results show that MtrE can be regulated by periplasmic binding events and that the interaction between MtrE and MtrC is sufficient to stabilize this complex in an open state. In contrast to other efflux conduits, the open complex only displays a slight preference for cations. The maximum conductance we obtain in the in vitro recordings is comparable to that seen in our computational electrophysiology simulations conducted on the MtrE crystal structure, indicating that this state may reflect a physiologically relevant open conformation of MtrE. Our results suggest that the MtrC/E binding interface is an important modulator of MtrE function, which could potentially be targeted by new efflux inhibitors.Publisher PDFPeer reviewe
Photoinduced Excited State Electron Transfer at Liquid/Liquid Interfaces
Several aspects of the photoinduced electron transfer (ET) reaction betweencoumarin 314 (C314) and N,N-dimethylaniline (DMA) at the water/DMA interface areinvestigated by molecular dynamics simulations. New DMA and water/DMA potentialenergy surfaces are developed and used to characterize the neat water/DMA interface.The adsorption free energy, the rotational dynamics and the solvation dynamics of C314at the liquid/liquid interface are investigated and are generally in reasonable agreementwith available experimental data. The solvent free energy curves for the ET reactionbetween excited C314 and DMA molecules are calculated and compared with thosecalculated for a simple point charge model of the solute. It is found that thereorganization free energy is very small when the full molecular description of the soluteis taken into account. An estimate of the ET rate constant is in reasonable agreement withexperiment. Our calculations suggest that the polarity of the surface “reported” by thesolute, as reflected by solvation dynamics and the reorganization free energy, is strongly solute-dependent
Enhanced Data Discoverability For In Situ Hyperspectral Datasets
Field spectroscopic metadata is a central component in the quality assurance, reliability, and discoverability of hyperspectral data and the products derived from it. Cataloguing, mining, and interoperability of these datasets rely upon the robustness of metadata protocols for field spectroscopy, and on the software architecture to support the exchange of these datasets. Currently no standard for in situ spectroscopy data or metadata protocols exist. This inhibits the effective sharing of growing volumes of in situ spectroscopy datasets, to exploit the benefits of integrating with the evolving range of data sharing platforms. A core metadataset for field spectroscopy was introduced by Rasaiah et al., (2011-2015) with extended support for specific applications. This paper presents a prototype model for an OGC and ISO compliant platform-independent metadata discovery service aligned to the specific requirements of field spectroscopy. In this study, a proof-of-concept metadata catalogue has been described and deployed in a cloud-based architecture as a demonstration of an operationalized field spectroscopy metadata standard and web-based discovery service
ENHANCED DATA DISCOVERABILITY FOR IN SITU HYPERSPECTRAL DATASETS
Field spectroscopic metadata is a central component in the quality assurance, reliability, and discoverability of hyperspectral data and the products derived from it. Cataloguing, mining, and interoperability of these datasets rely upon the robustness of metadata protocols for field spectroscopy, and on the software architecture to support the exchange of these datasets. Currently no standard for in situ spectroscopy data or metadata protocols exist. This inhibits the effective sharing of growing volumes of in situ spectroscopy datasets, to exploit the benefits of integrating with the evolving range of data sharing platforms. A core metadataset for field spectroscopy was introduced by Rasaiah et al., (2011-2015) with extended support for specific applications. This paper presents a prototype model for an OGC and ISO compliant platform-independent metadata discovery service aligned to the specific requirements of field spectroscopy. In this study, a proof-of-concept metadata catalogue has been described and deployed in a cloud-based architecture as a demonstration of an operationalized field spectroscopy metadata standard and web-based discovery service
Non-aqueous electrolyte solutions in chemistry and modern technology
In this paper a brief survey is given of the properties of non-aqueous electrolyte solutions and their applications in chemistry and technology without going into the details of theory. Specific solvent-solute interactions and the role of the solvent beyond its function as a homogenous isotropic medium are stressed. Taking into account Parker's statement1) ldquoScientists nowadays are under increasing pressure to consider the relevance of their research, and rightly sordquo we have included examples showing the increasing industrial interest in non-aqueous electrolyte solutions.
The concepts and results are arranged in two parts. Part A concerns the fundamentals of thermodynamics, transport processes, spectroscopy and chemical kinetics of non-aqueous solutions and some applications in these fields. Part B describes their use in various technologies such as high-energy batteries, non-emissive electro-optic displays, photoelectrochemical cells, electrodeposition, electrolytic capacitors, electro-organic synthesis, metallurgic processes and others.
Four Appendices are added. Appendix A gives a survey on the most important non-aqueous solvents, their physical properties and correlation parameters, and the commonly used abbreviations. Appendices B and C show the mathematical background of the general chemical model. The Symbols and abbreviations of the text are listed and explained in Appendix D
- …