123,418 research outputs found

    Induced interactions in dilute atomic gases and liquid helium mixtures

    Full text link
    In dilute mixtures of two atomic gases, interactions between two minority atoms acquire a contribution due to interaction with the majority component. Using thermodynamic arguments, we derive expressions for this induced interaction for both fermions and bosons for arbitrary strength of the interaction between the two components. Implications of the work for the theory of dilute solutions of 3^3He in liquid 4^4He are discussed.Comment: 7 pages, 1 figure, NORDITA-2012-3

    Microwave Nanotube Transistor Operation at High Bias

    Full text link
    We measure the small signal, 1 GHz source-drain dynamical conductance of a back-gated single-walled carbon nanotube field effect transistor at both low and high dc bias voltages. At all bias voltages, the intrinsic device dynamical conductance at 1 GHz is identical to the low frequency dynamical conductance, consistent with the prediction of a cutoff frequency much higher than 1 GHz. This work represents a significant step towards a full characterization of a nanotube transistor for RF and microwave amplifiers.Comment: 3 pages, 4 figure

    Spin-dependent properties of a two-dimensional electron gas with ferromagnetic gates

    Full text link
    A theoretical prediction of the spin-dependent electron self-energy and in-plane transport of a two-dimensional electron gas in proximity with a ferromagnetic gate is presented. The application of the predicted spin-dependent properties is illustrated by the proposal of a device configuration with two neighboring ferromagnetic gates which produces a magnetoresistance effect on the channel current generated by nonmagnetic source and drain contacts. Specific results are shown for a silicon inversion layer with iron gates. The gate leakage current is found to be beneficial to the spin effects.Comment: 3 pages, 2 figures, Replaced with revised versio

    On bosonic limits of two recent supersymmetric extensions of the Harry Dym hierarchy

    Full text link
    Two generalized Harry Dym equations, recently found by Brunelli, Das and Popowicz in the bosonic limit of new supersymmetric extensions of the Harry Dym hierarchy [J. Math. Phys. 44:4756--4767 (2003)], are transformed into previously known integrable systems: one--into a pair of decoupled KdV equations, the other one--into a pair of coupled mKdV equations from a bi-Hamiltonian hierarchy of Kupershmidt.Comment: 7 page

    Feasibility of Experimental Realization of Entangled Bose-Einstein Condensation

    Full text link
    We examine the practical feasibility of the experimental realization of the so-called entangled Bose-Einstein condensation (BEC), occurring in an entangled state of two atoms of different species. We demonstrate that if the energy gap remains vanishing, the entangled BEC persists as the ground state of the concerned model in a wide parameter regime. We establish the experimental accessibility of the isotropic point of the effective parameters, in which the entangled BEC is the exact ground state, as well as the consistency with the generalized Gross-Pitaevskii equations. The transition temperature is estimated. Possible experimental implementations are discussed in detail.Comment: 6 pages, published versio

    Quantum decoherence of excitons in a leaky cavity with quasimode

    Get PDF
    For the excitons in the quantum well placed within a leaky cavity, the quantum decoherence of a mesoscopically superposed states is investigated based on the factorization theory for quantum dissipation. It is found that the coherence of the exciton superposition states will decrease in an oscillating form when the cavity field interacting with the exciton is of the form of quasimode. The effect of the thermal cavity fields on the quantum decoherence of the superposition states of the exciton is studied and it is observed that the higher the temperature of the environment is, the shorter the decoherence characteristic time is.Comment: 1 figure, 7 page

    Effective potential in Lorentz-breaking field theory models

    Get PDF
    We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and, then, some examples of Lorentz-violating extensions of scalar QED. We observed, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz-symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we studied depend on the background tensors responsible for the Lorentz symmetry violation. This have consequences in physical quantities like, for example, in the induced mass due to Coleman-Weinberg mechanism.Comment: Version accepted for publication in EPJ
    corecore